J Am Chem Soc
May 2013
A novel pentadecanuclear lanthanide hydroxy cluster [{Ln15(μ3-OH)20(PepCO2)10(DBM)10Cl}Cl4] (Ln = Eu (1), Tb (2)) featuring the first example with peptoids as supporting ligands was prepared and fully characterized. The solid-state structures of 1 and 2 were established via single-crystal X-ray crystallography. ESI-MS experiments revealed the retention of the cluster core in solution.
View Article and Find Full Text PDFOrg Biomol Chem
June 2013
Incorporation of fluorous ponytails such as polyfluorinated alkyl residues (CH2)m(CF2)nCF3 leads to a novel class of bright rhodamine-based fluorescence dyes. These dyes combine the excellent photophysical properties of the frequently used rhodamine dyes with the unique features of "light" fluorous molecules. One of those features is the possibility to separate substances utilizing fluorous solid-phase extraction (F-SPE), which is based on the specific intermolecular interaction between fluorous compounds.
View Article and Find Full Text PDFThe fluorophore rhodamine B is often used in biological assays. It is inexpensive, robust under a variety of reaction conditions, can be covalently linked to bioactive molecules, and has suitable spectral properties in terms of absorption and fluorescence wavelength. Nonetheless, there are some drawbacks: it can readily form a spirolactam compound, which is nonfluorescent, and therefore may not be the dye of choice for all fluorescence microscopy applications.
View Article and Find Full Text PDFFluorescently-labeled biomolecules are often utilized in biochemical or cellular experiments without further detailed spectroscopical characterization. This report is intended to narrow this gap and therefore presents the photophysical investigation of a library of 17 fluorescently-labeled molecules, namely peptoid transporters. First, one peptoid structure is labeled with seven different fluorophores and the spectroscopical properties are examined.
View Article and Find Full Text PDFSingle-molecule microscopy is a powerful tool for investigating various uptake mechanisms of cell-penetrating biomolecules. A particularly interesting class of potential transporter molecules are peptoids. Fluorescence labels for such experiments need to comply with several physical, chemical, and biological requirements.
View Article and Find Full Text PDF