Publications by authors named "Binesh Unnikrishnan"

Metastasis is the primary cause of cancer mortality, and its prevention is particularly challenging due to the complex tumor microenvironment. Carbon nanomaterials are well known to act as drug delivery systems for therapeutics. Nonetheless, their inherent capabilities in combating tumor cells remain underexplored.

View Article and Find Full Text PDF

Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGs) using controlled pyrolysis and polymerization techniques.

View Article and Find Full Text PDF

The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots.

View Article and Find Full Text PDF

Effective infectious keratitis treatment must eliminate the pathogen, reduce the inflammatory response, and prevent persistent damage to the cornea. Infectious keratitis is generally treated with broad-spectrum antibiotics; however, they have the risk of causing corneal epithelial cell damage and drug resistance. In this study, we prepared a nanocomposite (Arg-CQDs/pCur) from arginine (Arg)-derived carbon quantum dots (Arg-CQDs) and polymeric curcumin (pCur).

View Article and Find Full Text PDF

Singlet oxygen (O) is a type of reactive oxygen species (ROS), playing a vital role in the physiological and pathophysiological processes. Specific probes for monitoring intracellular O still remain challenging. In this study, we develop a ratiometric fluorescent probe for the real-time intracellular detection of O using o-phenylenediamine-derived carbonized polymer dots (o-PD CPDs).

View Article and Find Full Text PDF

Pulsed laser irradiation can cause the fragmentation of nanoparticles, which generates cluster ions. This allows nanoparticles to be adopted as mass tag/signal amplifiers in laser desorption/ionization mass spectrometry (LDI-MS) bioassays. Herein, we demonstrate the potential of using the signal from alloy cluster ions in bioassays through a fibrin clot model to determine the activity of thrombin.

View Article and Find Full Text PDF

Synthesizing MXenes from MAX (MAX) phases using hazardous hydrogen fluoride is a common and effective method. However, fluorine termination on the basal planes and edges of the resulting MXenes is undesirable for the electrocatalytic hydrogen evolution reaction (HER), while oxygen (O), hydroxyl (OH), and sulfur (S) termination favors this reaction. Herein, we unveil a simple fluorine-free exfoliation and two-step vulcanization method for synthesizing molybdenum sulfide-modified molybdenum carbide (MoS/MoCT MXene, T = OH, O, S) for the HER in alkaline medium.

View Article and Find Full Text PDF

Bacteremia and associated bacterial sepsis are potentially fatal and occur when the host response to microbial invasion is impaired or compromised. This motivated us to develop carbonized polymer dots (CPDs) from a mixture of mannose (Man) and positively charged amino acids [AAs; lysine, arginine (Arg), or histidine] through a one-step mild pyrolysis procedure, which effectively inhibited drug-resistant bacterial strains isolated from septic patients. The as-prepared CPDs showed broad-spectrum antibacterial activity, including multidrug-resistant bacteria, even in human plasma.

View Article and Find Full Text PDF

Monitoring of structural changes in subcellular organelles is critical to evaluate the chemotherapeutic response of cells. However, commercial organelle selective fluorophores are easily photobleached, and thus are unsuitable for real-time and long-term observation. We have developed photostable carbon-dot liposomes (CDsomes)-based fluorophores for organellar and suborganellar imaging to circumvent these issues.

View Article and Find Full Text PDF

Carbon-based materials, especially graphene oxide (GO) and carbon dots possessing antibacterial properties, are widely used for various applications. Recently, we reported the antibacterial and antioxidant properties of carbonized nanogels (CNGs) for the treatment of bacterial keratitis, and as a virostatic agent against infectious bronchitis virus. In this work, we demonstrate the use of CNGs/GO nanocomposite (GO@CNGs) membrane for the efficient removal of Gram-negative (E.

View Article and Find Full Text PDF

Developing antimicrobial agents that can eradicate drug-resistant (DR) bacteria and provide sustained protection from DR bacteria is a major challenge. Herein, we report a mild pyrolysis approach to prepare carbon nanogels (CNGs) through polymerization and the partial carbonization of l-lysine hydrochloride at 270 °C as a potential broad-spectrum antimicrobial agent that can inhibit biopolymer-producing bacteria and clinical drug-resistant isolates and tackle drug resistance issues. We thoroughly studied the structures of the CNGs, their antibacterial mechanism, and biocompatibility.

View Article and Find Full Text PDF

Highly electrocatalytic cuprous halide/copper oxide nanoparticles (CuX@CunO NPs; X = Cl, Br or I; n = 1 or 2) have been fabricated on copper foils for sensitive detection of glucose. Formation of CuX@CuO NPs involves two steps- in situ electrochemical deposition of CuX on the foil and then conversion of CuX to CuO. The deposited CuX converts to CuO, leading to the generation of abundant oxygen vacancies in the CuO lattice, enhancing the number of catalytically active sites, and improving the charge transfer efficiency.

View Article and Find Full Text PDF

We have demonstrated that alginate with negligible anticoagulant activity can be converted into carbonized nanogels with potent anticoagulant activity through a solid-state heating process. The conversion of alginate into graphene-like nanosheet (GNS)-embedded polyphenolic-alginate nanogels (GNS/Alg-NGs) has been carried out through condensation and carbonization processes. The GNS/Alg-NGs exhibit much stronger anticoagulant activity (>520-fold) compared to untreated alginate, mainly because their polyphenolic structures have a high binding affinity [dissociation constant (K) = 2.

View Article and Find Full Text PDF

We report a one-pot, room-temperature, morphology-controlled synthesis of titanium oxide (TiO)-gold nanocomposites (TiO-Au NCs) using HAuCl and TiCl as precursors, and catechin as reducing agent. TiO-Au NCs have a range of morphologies from star-like to urchin-like shape depending on the concentration of TiCl in the reaction mixture. The urchin-shaped TiO-Au NCs exhibited excellent photocatalytic activity toward dye degradation due to strong light absorption, plasmon-induced excitation, high conductivity of the gold, and reduced hole-electron pair recombination.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) are novel nanomaterials with interesting physical and chemical properties, which are intensely studied only in the last decade. Unique properties, such as its inherent fluorescent property, high resistance to photobleaching, high surface area, ease of synthesis, flexible choice of precursor, and surface tunability enable CQDs for promising application in biosensing. Therefore, it is highly useful in clinical, forensic, medical, food and drug analyses, disease diagnosis, and various other fields of biosensing.

View Article and Find Full Text PDF

Large scale mining, manufacturing industries, exploitation of underground water, depletion of groundwater level, and uncontrolled discharge of industrial wastes have caused severe heavy metal ion pollution to the environment throughout the world. Therefore, the rapid detection of such toxic metal ions is inevitable. However, conventional methods require sophisticated instruments and skilled manpower and are difficult to operate in on-field conditions.

View Article and Find Full Text PDF

With the recent advancement in understanding and control of the structure and optical properties of fluorescent carbon dots (CDs), they have been shown to be valuable in biolabeling of bacteria, tumor cells, tissues, and organelles. Their extremely small size and tunable functional properties coupled with ultrastable fluorescence enable CDs to be used for easy and effective labeling of various organelles. In addition, CDs with advantages of easy preparation and functionalization with recognition elements and/or drugs have emerged as nanocarriers for organelle-targeted drug delivery.

View Article and Find Full Text PDF

It is demonstrated that carbon quantum dots derived from curcumin (Cur-CQDs) through one-step dry heating are effective antiviral agents against enterovirus 71 (EV71). The surface properties of Cur-CQDs, as well as their antiviral activity, are highly dependent on the heating temperature during synthesis. The one-step heating of curcumin at 180 °C preserves many of the moieties of polymeric curcumin on the surfaces of the as-synthesized Cur-CQDs, resulting in superior antiviral characteristics.

View Article and Find Full Text PDF

Graphene oxide (GO), a two-dimensional material with a high aspect ratio and polar functional groups, can physically adsorb single-strand DNA through different types of interactions, such as hydrogen bonding and π-π stacking, making it an attractive nanocarrier for nucleic acids. In this work, we demonstrate a strategy to target exosites I and II of thrombin simultaneously by using programmed hybrid-aptamers for enhanced anticoagulation efficiency and stability. The targeting ligand is denoted as Supra-TBA (supramolecular TBA), containing TBA (a 15-base nucleotide, targeting exosite I of thrombin) and TBA (a 29-base nucleotide, targeting exosite II of thrombin), and it is designed to allow consecutive hybridization of TBA and TBA to form a network of TBAs (i.

View Article and Find Full Text PDF

Many serious public health emergencies around the globe are caused by viral epidemics. Thus, developing a reliable method for viral screening is in high demand. Multiplex assays for simultaneous detection and fast screening of high-risk pathogens are especially needed.

View Article and Find Full Text PDF

We have developed a rapid and straightforward topical treatment method for dry eye disease (DED) using poly(catechin) capped-gold nanoparticles (Au@Poly-CH NPs) carrying amfenac [AF; a nonsteroidal anti-inflammatory drug (NSAID)] through effective attenuation of ocular surface tissue damage in dry eyes. A dual-targeted strategy based on ocular therapeutics was adopted to simultaneously block the cyclooxygenase enzymes-induced inflammation and reactive oxygen species (ROS)-induced oxidative stress, the primary two causes of DED. The self-assembled core-shell Au@Poly-CH NPs synthesized via a simple reaction between tetrachloroaurate(iii) and catechin possess a poly(catechin) shell (∼20 nm) on the surface of each Au NP (∼60 nm).

View Article and Find Full Text PDF

Nanomaterials possessing enzyme-like activity have been extensively studied owing to their high stability and tunable catalytic properties. In this work, a simple method has been developed for the synthesis of porous manganese oxide/manganese ferrite (MnO/MnFeO) nanopopcorns (MFNPs) in neutral media. The MFNPs exhibit dual enzymatic activities towards selective oxidation of ketoses followed by HO-induced decline of its catalytic activity.

View Article and Find Full Text PDF

Due to the increasing global population, growing contamination of water and air, and wide spread of infectious diseases, antibiotics are extensively used as a major antibacterial drug. However, many microbes have developed resistance to antibiotics through mutation over time. As an alternative to antibiotics, antimicrobial nanomaterials have attracted great attention due to their advantageous properties and unique mechanisms of action toward microbes.

View Article and Find Full Text PDF

Nanoparticle-assisted laser desorption/ionization mass spectrometry (LDI-MS) is a powerful tool for the analysis of a wide range of molecules. Many of the drawbacks in the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) can be avoided with the application of nanomaterials as matrices as well as substrates for the LDI-MS to achieve a low background noise in low m/z region and high reproducibility. Surface-assisted LDI (SALDI)-MS, especially the nanoparticle-based LDI-MS, has emerged as a promising technique for the analysis of trace amounts of substances in various biological samples due to their high surface area for analyte enrichment, efficient desorption/ionization, and homogeneous crystallization of sample.

View Article and Find Full Text PDF

Graphene oxide (GO) has unique structural properties, can effectively adsorb single-strand DNA through π-π stacking, hydrogen bonding and hydrophobic interactions, and is useful in many biotechnology applications. In this study, we developed a thrombin-binding-aptamers (15- and 29-mer) conjugated graphene oxide (TBA15/TBA29-GO) composite for the efficient inhibition of thrombin activity towards the formation of fibrin from fibrinogen. The TBA15/TBA29-GO composite was simply obtained by the self-assembly of TBA15/TBA29 hybrids on GO.

View Article and Find Full Text PDF