Publications by authors named "Bhimareddy Dinesh"

Peptide-based hydrogels are considered of special importance due to their biocompatibility and biodegradability. They have a wide range of applications in the biomedical field, such as drug delivery, tissue engineering, wound healing, cell culture media, and biosensing. Nevertheless, peptide-based hydrogels composed of natural α-amino acids are limited for in vivo applications because of the possible degradation by proteolytic enzymes.

View Article and Find Full Text PDF

Probing the dynamics and quantifying the activities of intracellular protein kinases that coordinate cell growth and division and constitute biomarkers and pharmacological targets in hyperproliferative and pathological disorders remain a challenging task. Here engineering and characterization of a nanobiosensor of the mitotic kinase CDK1, through multifunctionalization of carbon nanotubes with a CDK1-specific fluorescent peptide reporter, are described. This original reporter of CDK1 activity combines the sensitivity of a fluorescent biosensor with the unique physico-chemical and biological properties of nanotubes for multifunctionalization and efficient intracellular penetration.

View Article and Find Full Text PDF

Peptides constituted of backbone homologated α-amino acids combined with carbon materials offer interesting possibilities in the modulation of cellular functions. In this work, we have prepared diphenylalanine β- and γ-peptides and conjugated them to carbon nanotubes (CNTs). These hybrids were able to self-assemble into fibrillar dendritic structures enabling the growth of primary hippocampal cells and the modulation of their neuronal functions.

View Article and Find Full Text PDF

Molecular gels formed by the self-assembly of low-molecular-weight gelators have received increasing interest because of their potential applications in drug delivery. In particular, the ability of peptides and amino acids to spontaneously self-assemble into three-dimensional fibrous network has been exploited in the development of hydrogels. In this context, we have investigated the capacity of binary mixtures of aromatic amino acid derivatives to form hydrogels.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are a unique tool in nanotechnology owing to their exceptional properties that offer a variety of opportunities for applications in different fields. Nevertheless, their low dispersibility in organic solvents and in aqueous media hampers their development. The functionalization of their surface allows overcoming this issue, while exploiting and tuning their properties.

View Article and Find Full Text PDF

The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes.

View Article and Find Full Text PDF

Crystals of Boc-γ(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at Tc ≈ 205 K from the orthorhombic space group P22121 (Z' = 1) to the monoclinic space group P21 (Z' = 2) with a hysteresis of ∼2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with ∼50% contributions from its two components.

View Article and Find Full Text PDF

Unconstrained γ(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (αγ)n sequences. The C12 helical conformation for the decapeptide, Boc-[Leu-γ(4)(R)Val]5-OMe, is established in crystals by X-ray diffraction. A regular C12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-[Leu-γ(4)(R)Val]9-OMe, and a designed 16 residue (αγ)n peptide, incorporating variable side chains.

View Article and Find Full Text PDF

Monosubstituted γ(4)-residues (γ(4)Leu, γ(4)Ile, and γ(4)Val) form helices even in short homooligomeric sequences. C14 helix formation is established by X-ray diffraction in homooligomeric (γ)n tetra-, hexa- and decapeptide sequences demonstrating the high propensity of γ residues, with proteinogenic side chains, to adopt locally folded conformations.

View Article and Find Full Text PDF