Publications by authors named "Bertrand Castaing"

SUMOylation is a post-translational modification catalyzed by a multi-step enzymatic cascade. To gain structural biology insights into the last step of this process, where SUMO is transferred from a SUMO~UBC9 molecule onto a substrate, stable complexes with SUMO covalently linked to UBC9, the substrate, or both are essential. Here, building on previously published approaches and our experience, we describe detailed protocols for the generation of a simple stable mimetic of human SUMO~UBC9, as well as a stably SUMOylated version of a model substrate, the C-terminal domain of RANGAP1.

View Article and Find Full Text PDF

In this study, we employed a fusion protein-assisted approach to crystallize human SUMO1, an essential covalent protein modifier that also interacts noncovalently with specific linear protein motifs called SUMO-interacting motifs (SIMs). SUMO1 has been crystallized previously as part of various complexes but never in isolation. Our strategy involved fusing a variant of a known crystallization facilitator, the TELSAM domain, upstream of the folded part of the SUMO1 protein (residues 18-97).

View Article and Find Full Text PDF

RING-type E3 ubiquitin ligases promote ubiquitylation by stabilising an active complex between a ubiquitin-loaded E2-conjugating enzyme and a protein substrate. To fulfil this function, the E3 ubiquitin-protein ligase SIAH1 and other SINA/SIAH subfamily RING-type E3 ligases employ an N-terminal catalytic RING domain and a C-terminal substrate-binding domain (SBD), separated by two zinc fingers. Here, we present the first crystal structure of the RING domain of human SIAH1, together with an adjacent zinc finger, revealing a potential RING dimer, which was validated in solution using static light scattering.

View Article and Find Full Text PDF

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution.

View Article and Find Full Text PDF

Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase.

View Article and Find Full Text PDF

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA.

View Article and Find Full Text PDF

One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation.

View Article and Find Full Text PDF

8-Oxoguanine (GO) is a major purine oxidation product in DNA. Because of its highly mutagenic properties, GO absolutely must be eliminated from DNA. To do this, aerobic and anaerobic organisms from the three kingdoms of life have evolved repair mechanisms to prevent its deleterious effect on genetic integrity.

View Article and Find Full Text PDF

Liquid droplets of a host protein, formed by liquid-liquid phase separation, recruit guest proteins and provide functional fields. Recruitment into p53 droplets is similar between disordered and folded guest proteins, whereas the diffusion of guest proteins inside droplets depends on their structural types. In this study, to elucidate how the recruitment and diffusion properties of guest proteins are affected by a host protein, we characterized the properties of guest proteins in fused in sarcoma (FUS) droplets using single-molecule fluorescence microscopy in comparison with p53 droplets.

View Article and Find Full Text PDF

Despite the continuous discovery of host and guest proteins in membraneless organelles, complex host-guest interactions hinder the understanding of the molecular grammar governing liquid-liquid phase separation. In this study, we characterized the localization and dynamic properties of guest proteins in liquid droplets using single-molecule fluorescence microscopy. Eighteen guest proteins of different sizes, structures, and oligomeric states were examined in host p53 liquid droplets.

View Article and Find Full Text PDF

Beta-microseminoproteins (MSMBs) are small disulfide-rich proteins that are conserved among vertebrates. These proteins exhibit diverse biological activities and were mainly reported to play a role in male fertility, immunity, and embryogenesis. In this work, we focused on the chicken MSMB3 protein that was previously depicted as an egg antibacterial protein.

View Article and Find Full Text PDF

The non-structural protein NS1 of influenza A viruses is an RNA-binding protein of which its activities in the infected cell contribute to the success of the viral cycle, notably through interferon antagonism. We have previously shown that NS1 strongly binds RNA aptamers harbouring virus-specific sequence motifs (Marc et al., Nucleic Acids Res.

View Article and Find Full Text PDF

DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes.

View Article and Find Full Text PDF

MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms.

View Article and Find Full Text PDF

Native mass spectrometry (MS) encompasses methods to keep noncovalent interactions of biomolecular complexes intact in the gas phase throughout the instrument and to measure the mass-to-charge ratios of supramolecular complexes directly in the mass spectrometer. Electrospray ionization (ESI) in nondenaturing conditions is now an established method to characterize noncovalent systems. Matrix-assisted laser desorption/ionization (MALDI), on the other hand, consumes low quantities of samples and largely tolerates contaminants, making it a priori attractive for native MS.

View Article and Find Full Text PDF

Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases.

View Article and Find Full Text PDF

The nucleoid-associated protein HU is involved in numerous DNA transactions and thus is essential in DNA maintenance and bacterial survival. The high affinity of HU for SSBs (single-strand breaks) has suggested its involvement in DNA protection, repair and recombination. SSB-containing DNA are major intermediates transiently generated by bifunctional DNA N-glycosylases that initiate the BER (base excision repair) pathway.

View Article and Find Full Text PDF

The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes.

View Article and Find Full Text PDF

HU is one of the major nucleoid-associated proteins involved in bacterial chromosome structure and in all DNA-dependent cellular activities. Similarly to eukaryotic histones, this small dimeric basic protein wraps DNA in a non-sequence specific manner, promoting DNA super-structures. In most bacteria, HU is a homodimeric protein encoded by a single gene.

View Article and Find Full Text PDF

Transcription termination factor Rho is a ring-shaped, homo-hexamieric RNA translocase that dissociates transcription elongation complexes and transcriptional RNA-DNA duplexes (R-loops) in bacteria. The molecular mechanisms underlying these biological functions have been essentially studied with Rho enzymes from Escherichia coli or close Gram-negative relatives. However, phylo-divergent Rho factors may have distinct properties.

View Article and Find Full Text PDF
Article Synopsis
  • DNA glycosylases from the Fpg/Nei superfamily are crucial for repairing oxidized DNA bases, ensuring genome stability, but their inhibitors could be useful in cancer treatments due to synthetic lethal interactions.
  • The inhibitor 2-thioxanthine (2TX) was found to target the zinc finger DNA binding domain of the Fpg glycosylase, and its mechanism involves reacting with cysteine thiolates, leading to the loss of zinc from the enzyme.
  • Understanding how 2TX interacts with Fpg lays the groundwork for developing new, more effective inhibitors that could selectively target DNA glycosylases in therapeutic applications.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on how the Methanogen Chromosomal protein 1 (MC1) from Euryarchaea interacts with bent DNA, contributing to our understanding of DNA packaging mechanisms in Archaea.
  • - Researchers used Nuclear Magnetic Resonance (NMR) and paramagnetic probes to map the binding interactions and determine the polarity of MC1's attachment to DNA.
  • - They proposed the first structural model of the DNA-MC1 complex, confirming essential amino acids for DNA binding through experiments, highlighting the role of the Arg25 side-chain in neutralizing negative charges in the DNA's structure.
View Article and Find Full Text PDF

Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains.

View Article and Find Full Text PDF

The transcriptional activator RamA is involved in multidrug resistance (MDR) by increasing expression of the AcrAB-TolC RND-type efflux system in several pathogenic Enterobacteriaceae. In Salmonella enterica serovar Typhimurium (S. Typhimurium), ramA expression is negatively regulated at the local level by RamR, a transcriptional repressor of the TetR family.

View Article and Find Full Text PDF

DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion.

View Article and Find Full Text PDF