Background: The tricarboxylic acid (TCA) cycle and electron transport chain (ETC) are key metabolic pathways required for cellular ATP production. While loss of components in these pathways typically impairs cell survival, such defects can paradoxically promote tumorigenesis in certain cell types. One such example is loss of succinate dehydrogenase (SDH), which functions in both the TCA cycle and as Complex II of the ETC.
View Article and Find Full Text PDFBackground: Membranous nephropathy (MN) is a leading cause of nephrotic syndrome (NS). Since the identification of anti-phospholipase A2 receptor (anti-PLA2R) antibodies in 2009, the use of laser microdissection and tandem mass spectrometry (LMD/MS) has allowed the discovery of several target antigens in MN.
Methods: In this retrospective cohort study, adult patients evaluated at the Division of Nephrology at Brotzu Hospital (Cagliari, Italy) with biopsy-proven MN and a negative serological test for anti-PLA2R antibody underwent LMD/MS, performed at the Department of Laboratory Medicine and Pathology of Mayo Clinic (Rochester, MN, USA).
Introduction: Membranous nephropathy (MN) is characterized by subepithelial deposition of immune complexes along the glomerular basement membrane. The muscle-type phospholipase A2 receptor (PLA2R) has been identified as the principal antigen in MN, and its detection via immunofluorescence (IF) studies remains a diagnostic cornerstone. Advancements, including laser microdissection/mass spectrometry (LMD/MS), offer enhanced sensitivity for antigen identification, independent of epitope accessibility.
View Article and Find Full Text PDFBackground: Tandem mass spectrometry (MS/MS) has become a common clinical laboratory testing modality has demonstrated success in distinguishing between small protein variations in transthyretin amyloidosis. Since many common clinically significant RBC antigens are also small protein variations, this study aimed to determine if MS/MS could correctly detect common RBC antigens within the Rh, Kell, Duffy, MNS, Kidd, Diego, and Lutheran blood group systems.
Study Design And Methods: Residual samples from serotyped/genotyped blood donors at a hospital-based blood donation center from February to August 2021 were analyzed.
Objective: Extracranial carotid artery pathology accounts for 15% to 20% of ischemic strokes. Advancements in magnetic resonance angiography (MRA) with vessel wall imaging (VWI) have enabled the identification of vulnerable plaques, aiding in risk stratification for neurovascular events. This pilot study aimed to identify proteins in plaques with and without vulnerable features on MRA with VWI.
View Article and Find Full Text PDFIntegrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.
View Article and Find Full Text PDFObjective: We sought to identify differentially expressed proteins in serum, plasma, and plaque samples of patients with carotid atherosclerotic lesions.
Methods: We performed a systematic review of the proteomic profile of serum, plasma, and plaque samples of patients with carotid artery disease. We included full-length peer-reviewed studies of adult humans and reported them using PRISMA guidelines.
Membranous nephropathy (MN) results from accumulation of antigen-antibody immune complexes along the subepithelial region of the glomerular basement membranes. Over the last years, 13 target antigens have been discovered and include PLA2R, THSD7A, EXT1 and EXT2, NELL1, SEMA3B, NCAM1, CNTN1, HTRA1, FAT1, PCDH7, NTNG1, PCSK6 and NDNF, accounting for 80-90% of MN antigens. MN associated with many of these antigens have distinctive clinicopathologic findings.
View Article and Find Full Text PDFC3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense.
View Article and Find Full Text PDFMayo Clin Proc
November 2023
Membranous nephropathy (MN) is a pattern of injury caused by autoantibodies binding to specific target antigens, with accumulation of immune complexes along the subepithelial region of glomerular basement membranes. The past 20 years have brought revolutionary advances in the understanding of MN, particularly via the discovery of novel target antigens and their respective autoantibodies. These discoveries have challenged the traditional classification of MN into primary and secondary forms.
View Article and Find Full Text PDFMembranous nephropathy (MN) is a pattern of injury caused by autoantibodies binding to specific target antigens, with accumulation of immune complexes along the subepithelial region of glomerular basement membranes. The past 20 years have brought revolutionary advances in the understanding of MN, particularly via the discovery of novel target antigens and their respective autoantibodies. These discoveries have challenged the traditional classification of MN into primary and secondary forms.
View Article and Find Full Text PDFHistone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis.
View Article and Find Full Text PDFJ Am Soc Nephrol
January 2024
Laser capture microdissection and mass spectrometry (LCM/MS) is a technique that involves dissection of glomeruli from paraffin-embedded biopsy tissue, followed by digestion of the dissected glomerular proteins by trypsin, and subsequently mass spectrometry to identify and semiquantitate the glomerular proteins. LCM/MS has played a crucial role in the identification of novel types of amyloidosis, biomarker discovery in fibrillary GN, and more recently discovery of novel target antigens in membranous nephropathy (MN). In addition, LCM/MS has also confirmed the role for complement proteins in glomerular diseases, including C3 glomerulopathy.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2023
Although tandem mass tag (TMT)-based isobaric labeling has become a powerful approach for multiplexed protein quantitation, automating the workflow for this technique has not been easy to achieve for widespread adoption. This is because preparation of TMT-labeled peptide samples involves multiple steps ranging from protein extraction, denaturation, reduction, and alkylation to tryptic digestion, desalting, labeling, and cleanup, all of which require a high level of proficiency. The variability resulting from multiple processing steps is inherently problematic, especially with large-scale clinical studies that involve hundreds of samples where reproducibility is critical for quantitation.
View Article and Find Full Text PDFAlthough single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples.
View Article and Find Full Text PDFKidney Int Rep
June 2023
Introduction: Membranous nephropathy (MN) is the most common glomerular disease associated with sarcoidosis. The target antigen M-type phospholipase A2 receptor 1 (PLA2R) has been identified in a subset of sarcoidosis-associated MN. The target antigen is not known in the remaining sarcoidosis-associated MN.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
July 2023
Laser capture microdissection (LCM) has become an indispensable tool for mass spectrometry-based proteomic analysis of specific regions obtained from formalin-fixed paraffin-embedded (FFPE) tissue samples in both clinical and research settings. Low protein yields from LCM samples along with laborious sample processing steps present challenges for proteomic analysis without sacrificing protein and peptide recovery. Automation of sample preparation workflows is still under development, especially for samples such as laser-capture microdissected tissues.
View Article and Find Full Text PDFDrugs are an important secondary cause of membranous nephropathy (MN) with the most common drugs associated with MN being nonsteroidal anti-inflammatory drugs (NSAIDs). Since the target antigen in NSAID-associated MN is not known, we performed laser microdissection of glomeruli followed by mass spectrometry (MS/MS) in 250 cases of PLA2R-negative MN to identify novel antigenic targets. This was followed by immunohistochemistry to localize the target antigen along the glomerular basement membrane and western blot analyses of eluates of frozen biopsy tissue to detect binding of IgG to the novel antigenic target.
View Article and Find Full Text PDFJ Am Soc Nephrol
March 2023
Significance Statement: Syphilis is a common worldwide sexually transmitted infection. Proteinuria may occur in patients with syphilis. Membranous nephropathy (MN) is the most common cause of proteinuria in syphilis.
View Article and Find Full Text PDFMembranous nephropathy (MN) is characterized by subepithelial accumulation of immune complexes along the glomerular basement membranes. The immune complexes compromise IgG and the corresponding target antigen. Recent advances have led to the discovery of novel target MN antigens.
View Article and Find Full Text PDFMol Neurodegener
January 2023
Background: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain.
View Article and Find Full Text PDF