Correction for 'Flow and clogging of capillary droplets' by Yuxuan Cheng , , 2024, https://doi.org/10.1039/D4SM00752B.
View Article and Find Full Text PDFCapillary droplets form due to surface tension when two immiscible fluids are mixed. We describe the motion of gravity-driven capillary droplets flowing through narrow constrictions and obstacle arrays in both simulations and experiments. Our new capillary deformable particle model recapitulates the shape and velocity of single oil droplets in water as they pass through narrow constrictions in microfluidic chambers.
View Article and Find Full Text PDFNumerous experimental and computational studies show that continuous hopper flows of granular materials obey the Beverloo equation that relates the volume flow rate and the orifice width : ∼ (/ - ), where is the average particle diameter, is an offset where ∼ 0, the power-law scaling exponent = - 1/2, and is the spatial dimension. Recent studies of hopper flows of deformable particles in different background fluids suggest that the particle stiffness and dissipation mechanism can also strongly affect the power-law scaling exponent . We carry out computational studies of hopper flows of deformable particles with both kinetic friction and background fluid dissipation in two and three dimensions.
View Article and Find Full Text PDF