Objective: To investigate high-frequency activities (HFA) associated with thalamic sleep spindles.
Methods: We studied a cohort of ten pediatric patients with medication resistant epilepsy who were identified as potential candidates for thalamic neuromodulation. These patients had thalamic sampling as well as presumed epileptogenic zones, using stereotactic EEG (SEEG) with a sampling frequency of 2,000 Hz.
Objective: To establish the utility of long-term electroencephalogram (EEG) in forecasting epilepsy onset in children with autism spectrum disorder (ASD).
Study Design: A single-institution, retrospective analysis of children with ASD, examining long-term overnight EEG recordings collected over a period of 15 years, was conducted. Clinical EEG findings, patient demographics, medical histories, and additional Autism Diagnostic Observation Schedule data were examined.
Background: Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study.
View Article and Find Full Text PDFSurgery holds the best outcomes for drug-resistant epilepsy in children, making localization of a seizure focus essential. However, there is limited research on the contribution of magnetoencephalography and single-photon emission computed tomography (SPECT) to the presurgical evaluation of lesional and nonlesional pediatric patients. This study proposed to evaluate the concordance of SPECT and magnetoencephalography (MEG) to scalp electroencephalography (EEG) to determine their effective contribution to the presurgical evaluation.
View Article and Find Full Text PDF