Publications by authors named "Benjamin D Boros"

Wide variation of responses to identical stimuli presented to genetically inbred mice suggests the hypothesis that stochastic epigenetic variation during neurodevelopment can mediate such phenotypic differences. However, this hypothesis is largely untested since capturing pre-existing molecular states requires non-destructive, longitudinal recording. Therefore, we tested the potential of Calling Cards (CC) to record transient neuronal enhancer activity during postnatal development, and thereby associate epigenetic variation with a subsequent phenotypic presentation - degree of seizure response to the pro-convulsant pentylenetetrazol.

View Article and Find Full Text PDF
Article Synopsis
  • Proteomic studies on postmortem human brain tissue have assessed the effects of aging and neurodegenerative diseases, particularly Alzheimer's, but identifying specific proteins that influence biological processes remains a challenge.
  • A cross-platform analysis focused on synaptic processes in the entorhinal cortex was conducted, using mass spectrometry to identify 2260 proteins and correlate them with dendritic spine metrics.
  • The study successfully pinpointed Twinfilin-2 (TWF2) as a key protein linked to spine length, and experimentally validated that enhancing TWF2 levels boosts thin spine growth in neurons, thus contributing to a deeper understanding of synaptic alterations in Alzheimer's.
View Article and Find Full Text PDF

Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss. ALS is now associated with mutations in numerous genes, many of which cause disease in part through toxic gain-of-function mechanisms. Antisense oligonucleotides (ASOs) are small sequences of DNA that can reduce expression of a target gene at the post-transcriptional level, making them attractive for neutralizing mutant or toxic gene products.

View Article and Find Full Text PDF

Synapse or dendritic spine loss is the strongest correlate of cognitive decline in Alzheimer's disease (AD), and neurofibrillary tangles (NFTs), but not amyloid-β plaques, associate more closely with transition to mild cognitive impairment. Yet, how dendritic spine architecture is affected by hyperphosphorylated tau is still an ongoing question. To address this, we combined cell and biochemical analyses of the Tau P301S mouse line (PS19).

View Article and Find Full Text PDF

Subtle alterations in dendritic spine morphology can induce marked effects on connectivity patterns of neuronal circuits and subsequent cognitive behavior. Past studies of rodent and nonhuman primate aging revealed reductions in spine density with concomitant alterations in spine morphology among pyramidal neurons in the prefrontal cortex. In this report, we visualized and digitally reconstructed the three-dimensional morphology of dendritic spines from the dorsolateral prefrontal cortex in cognitively normal individuals aged 40-94 years.

View Article and Find Full Text PDF

Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1 and ROCK2 mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis.

View Article and Find Full Text PDF

Objective: Neuroimaging and other biomarker assays suggest that the pathological processes of Alzheimer's disease (AD) begin years prior to clinical dementia onset. However, some 30 to 50% of older individuals who harbor AD pathology do not become symptomatic in their lifetime. It is hypothesized that such individuals exhibit cognitive resilience that protects against AD dementia.

View Article and Find Full Text PDF