Publications by authors named "Benjamin Bokor"

A protein's molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly states.

View Article and Find Full Text PDF

mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS).

View Article and Find Full Text PDF

We previously demonstrated that we could hijack the fungal pheromone signaling pathway to provide a living yeast biosensor where peptide biomarkers were recognized by G-protein-coupled receptors and engineered to transcribe a readout. Here, we demonstrated that the protease could be reintroduced to the biosensor to provide a simple mechanism for distinguishing single-amino-acid changes in peptide ligands that, otherwise, would likely be difficult to detect using binding-based assays. We characterized the dose-response curves for five fungal pheromone G-protein-coupled receptors, peptides, and proteases, , , , and .

View Article and Find Full Text PDF

Messenger RNAs (mRNAs) interact with RNA-binding proteins (RBPs) in diverse ribonucleoprotein complexes (RNPs) during distinct life-cycle stages for their processing and maturation. While substantial attention has focused on understanding RNA regulation by assigning proteins, particularly RBPs, to specific RNA substrates, there has been considerably less exploration leveraging protein-protein interaction (PPI) methodologies to identify and study the role of proteins in mRNA life-cycle stages. To address this gap, we generated an RNA-aware RBP-centric PPI map across the mRNA life-cycle by immunopurification (IP-MS) of ~100 endogenous RBPs across the life-cycle in the presence or absence of RNase, augmented by size exclusion chromatography (SEC-MS).

View Article and Find Full Text PDF

The Size-Exclusion Chromatography Analysis Toolkit (SECAT) elucidates protein complex dynamics using co-fractionated bottom-up mass spectrometry (CF-MS) data. Here, we present a protocol for the network-centric analysis and interpretation of CF-MS profiles using SECAT. We describe the technical steps for preprocessing, scoring, semi-supervised machine learning, and quantification, including common pitfalls and their solutions.

View Article and Find Full Text PDF

Protein molecular interactions and post-translational modifications (PTMs), such as phosphorylation, can be co-dependent and reciprocally co-regulate each other. Although this interplay is central for many biological processes, a systematic method to simultaneously study assembly-states and PTMs from the same sample is critically missing. Here, we introduce SEC-MX (Size Exclusion Chromatography fractions MultipleXed), a global quantitative method combining Size Exclusion Chromatography and PTM-enrichment for simultaneous characterization of PTMs and assembly-states.

View Article and Find Full Text PDF