Publications by authors named "Benjamin Blasco"

Elimination of malaria will require new drugs with potent activity against Plasmodium falciparum mature stage V gametocytes, the only stages infective to the mosquito vector. The identification and comprehensive validation of molecules active against these quiescent stages is difficult due to the specific biology of gametocytes, challenges linked to their cultivation in vitro and the lack of animal models suitable for evaluating the transmission-blocking potential of drug candidates in vivo. Here, we present a transmission-blocking drug discovery and development platform that builds on transgenic NF54/iGP1_RE9H parasites engineered to conditionally produce large numbers of stage V gametocytes expressing a red-shifted firefly luciferase viability reporter.

View Article and Find Full Text PDF

Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed drug susceptibilities to ganaplacide in 750 .

View Article and Find Full Text PDF
Article Synopsis
  • Efflux is a universal biological process in cells that helps remove various substances, including antibiotics, which can lead to multidrug resistance (MDR) in bacteria through the activity of efflux pumps, particularly in Gram-negative bacteria.
  • Over 50 potential efflux inhibitors have been identified to combat antibiotic resistance, but none have been successfully used in clinical settings due to challenges like toxicity and the complexity of bacteria's efflux systems.
  • Recent advancements in research tools, such as molecular docking models, show promise for developing new efflux inhibitors that could enhance the efficacy of existing antibiotics.
View Article and Find Full Text PDF

Background: The current pipeline for new antibiotics fails to fully address the significant threat posed by drug-resistant Gram-negative bacteria that have been identified by the World Health Organization (WHO) as a global health priority. New antibacterials acting through novel mechanisms of action are urgently needed. We aimed to identify new chemical entities (NCEs) with activity against Klebsiella pneumoniae and Acinetobacter baumannii that could be developed into a new treatment for drug-resistant infections.

View Article and Find Full Text PDF

Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition).

View Article and Find Full Text PDF

Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P.

View Article and Find Full Text PDF

Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous locus was replaced by a recodonized atp4 () coding region or the orthologous coding region from P.

View Article and Find Full Text PDF

The emergence and spread of resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials.

View Article and Find Full Text PDF

Strategies to counteract or prevent emerging drug resistance are crucial for the design of next-generation antimalarials. In the past, resistant parasites were generally identified following treatment failures in patients, and compounds would have to be abandoned late in development. An early understanding of how candidate therapeutics lose efficacy as parasites evolve resistance is important to facilitate drug design and improve resistance detection and monitoring up to the postregistration phase.

View Article and Find Full Text PDF

New antimalarial agents are identified and developed after extensive testing on Plasmodium falciparum parasites that can be grown in vitro. These susceptibility studies are important to inform lead optimisation and support further drug development. Until recently, little was known about the susceptibility of non-falciparum species as these had not been adapted to in vitro culture.

View Article and Find Full Text PDF

The 2-aminopyridine MMV048 was the first drug candidate inhibiting phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant and clinical isolates.

View Article and Find Full Text PDF

Background: The simian malaria parasite Plasmodium knowlesi is now a well-recognized pathogen of humans in South-East Asia. Clinical infections appear adequately treated with existing drug regimens, but the evidence base for this practice remains weak. The availability of P.

View Article and Find Full Text PDF

The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.

View Article and Find Full Text PDF

In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate susceptibility methods with treatment outcomes, most notably with malaria.

View Article and Find Full Text PDF

Background: Recently published data suggest that artemisinin derivatives and synthetic peroxides, such as the ozonides OZ277 and OZ439, have a similar mode of action. Here the cross-resistance of OZ277 and OZ439 and four additional next-generation ozonides was probed against the artemisinin-resistant clinical isolate Plasmodium falciparum Cam3.I, which carries the K13-propeller mutation R539T (Cam3.

View Article and Find Full Text PDF

The emergence of drug-resistant malaria parasites continues to hamper efforts to control this lethal disease. Dihydroorotate dehydrogenase has recently been validated as a new target for the treatment of malaria, and a selective inhibitor (DSM265) of the Plasmodium enzyme is currently in clinical development. With the goal of identifying a backup compound to DSM265, we explored replacement of the SF-aniline moiety of DSM265 with a series of CF-pyridinyls while maintaining the core triazolopyrimidine scaffold.

View Article and Find Full Text PDF
Article Synopsis
  • - The lack of collaboration between academia and the pharmaceutical industry limits new drug discovery, but open source drug initiatives, like sharing physical compounds, could help bridge this gap and accelerate research.
  • - The Medicines for Malaria Venture created the Malaria Box, a collection of over 400 compounds tested against malaria, which has been shared with almost 200 research groups, encouraging public data sharing on screening results.
  • - Recent findings from the Malaria Box screenings revealed mechanisms of action for many compounds against various life stages of the malaria parasite, and some showed effectiveness against other pathogens and cancer cell lines, providing valuable data for further drug development.
View Article and Find Full Text PDF

The nucleoid-associated protein EspR, a chromosome organizer, has pleiotropic effects on expression of genes associated with cell wall function and pathogenesis in Mycobacterium tuberculosis. In particular, EspR binds to several sites upstream of the espACD locus to promote its expression, thereby ensuring full function of the ESX-1 secretion system, a major virulence determinant. The N terminus of EspR contains the helix-turn-helix DNA-binding domain, whereas the C-terminal dimerization domain harbors residues involved in intersubunit interactions.

View Article and Find Full Text PDF

The principal virulence determinant of Mycobacterium tuberculosis (Mtb), the ESX-1 protein secretion system, is positively controlled at the transcriptional level by EspR. Depletion of EspR reportedly affects a small number of genes, both positively or negatively, including a key ESX-1 component, the espACD operon. EspR is also thought to be an ESX-1 substrate.

View Article and Find Full Text PDF

The human pathogen Mycobacterium tuberculosis requires the ESX-1 secretion system for full virulence. EspR plays a key role in ESX-1 regulation via direct binding and transcriptional activation of the espACD operon. Here, we describe the crystal structures of EspR, a C-terminally truncated form, EspRΔ10, as well as an EspR-DNA complex.

View Article and Find Full Text PDF