Hydrogenolysis has emerged as one of the most effective means of converting polymeric lignin into monoaromatic fragments of value. Reported yields may be higher than for other methods and can exceed the theoretical yields estimated from measures of the content of lignin's most readily cleaved alkyl-aryl ether bonds in β-ether units. The high yields suggest that other units in lignin are being cleaved.
View Article and Find Full Text PDFWe show that platinum displays a self-adjusting surface that is active for the hydrogenation of acetone over a wide range of reaction conditions. Reaction kinetics measurements under steady-state and transient conditions at temperatures near 350 K, electronic structure calculations employing density-functional theory, and microkinetic modeling were employed to study this behavior over supported platinum catalysts. The importance of surface coverage effects was highlighted by evaluating the transient response of isopropanol formation following either removal of the reactant ketone from the feed, or its substitution with a similarly structured species.
View Article and Find Full Text PDFCommon strategies for conversion of lignocellulosic biomass to chemical products center on deconstructing biomass polymers into fermentable sugars. Here, we demonstrate an alternative strategy, a growth-coupled, high-yield bioconversion, by feeding cells a non-sugar substrate, by-passing central metabolism, and linking a key metabolic step to generation of acetyl-CoA that is required for biomass and energy generation. Specifically, we converted levulinic acid (LA), an established degradation product of lignocellulosic biomass, to butanone (a.
View Article and Find Full Text PDFThe use of polar aprotic solvents in acid-catalyzed biomass conversion reactions can lead to improved reaction rates and selectivities. We show that further increases in catalyst performance in polar aprotic solvents can be achieved through the addition of inorganic salts, specifically chlorides. Reaction kinetics studies of the Brønsted acid-catalyzed dehydration of fructose to hydroxymethylfurfural (HMF) show that the use of catalytic concentrations of chloride salts leads to a 10-fold increase in reactivity.
View Article and Find Full Text PDF