Ovarian cancer immunotherapy remains a challenge based on the "cold" tumor microenvironment. Herein we present a rational design to create immunogenic nanoparticles as a multi-agent platform that promotes immune response in a mouse model of ovarian cancer. The hybrid lipid-silica nanosystem is capable of co-loading four types of cargo molecules including a model antigen, nucleic acid-based adjuvant Cytosine-p-linked to Guanine (CpG, TLR3/9 agonist), lipid-based adjuvant (MPLA, TLR4 agonist) integrated into the lipid coat, and optionally a small molecule drug, such as the chemotherapeutic agent oxaliplatin, a well-established treatment for ovarian cancer.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8 T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells.
View Article and Find Full Text PDF