Astrobiology
September 2017
During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data.
View Article and Find Full Text PDFSaturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume.
View Article and Find Full Text PDFWe present laboratory studies of the radiolysis of pure (97%) solid H2O2 films by 50 keV H+ at 17 K. Using UV-visible and infrared reflectance spectroscopies, a quartz-crystal microbalance, and a mass spectrometer, we measured the absolute concentrations of the H2O, O2, H2O2, and O3 products as a function of irradiation fluence. Ozone was identified by both UV and infrared spectroscopies and O2 from its forbidden transition in the infrared at 1550 cm(-1).
View Article and Find Full Text PDF