Humans use their arms in complex ways that often demand two-handed coordination. Neurological conditions limit this impressive feature of the human motor system. Understanding how neuromodulatory techniques may alter neural mechanisms of bimanual coordination is a vital step towards designing efficient rehabilitation interventions.
View Article and Find Full Text PDFTranscutaneous spinal cord stimulation (tSCS) has the potential to promote improved sensorimotor rehabilitation by modulating the circuitry of the spinal cord non-invasively. Little is currently known about how cervical or lumbar tSCS influences the excitability of spinal and corticospinal networks, or whether the synergistic effects of multi-segmental tSCS occur between remote segments of the spinal cord. The aim of this review is to describe the emergence and development of tSCS as a novel method to modulate the spinal cord, while highlighting the effectiveness of tSCS in improving sensorimotor recovery after spinal cord injury.
View Article and Find Full Text PDFCoupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS).
View Article and Find Full Text PDFThe overall goal of this work was to create a high-resolution MRI atlas of the lumbosacral enlargement of the spinal cord of the rat (Sprague-Dawley), cat, domestic pig, rhesus monkey, and human. These species were chosen because they are commonly used in basic and translational research in spinal cord injuries and diseases. Six spinal cord specimens from each of the studied species (total of 30 specimens) were fixed, extracted, and imaged.
View Article and Find Full Text PDFJ Neurophysiol
January 2020
It has been established that coordinated arm and leg (A&L) cycling facilitates corticospinal drive and modulation of cervico-lumbar connectivity and ultimately improves overground walking in people with incomplete spinal cord injury or stroke. This study examined the effect of noninvasive transcutaneous spinal cord stimulation (tSCS) on the modulation of cervico-lumbar connectivity. Thirteen neurologically intact adults participated in the study.
View Article and Find Full Text PDFThe present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas.
View Article and Find Full Text PDF