Publications by authors named "Beatriz Luna"

Background: Traditional observational studies suggest that socioeconomic status (SES) may influence the risk of congenital anomalies; however, an association remains unclear due to residual confounding. This study used Mendelian randomization (MR) to explore the potential causal relationship between SES indicators and specific congenital anomalies.

Methods: We performed two-sample MR analyses to explore whether three indicators of SES-educational attainment, household income, and the Townsend Deprivation Index-have a relationship with the risk of major congenital anomalies.

View Article and Find Full Text PDF

Background: Individuals with Down syndrome are inherently predisposed to congenital anomalies due to a susceptible genotype that may interact with environmental factors. High-altitude exposure, in particular, has been linked to an increased risk of congenital heart disease. However, few studies have explored environmental risk factors for congenital anomalies in this population, and the specific impact of high altitude remains under-investigated.

View Article and Find Full Text PDF

Hippocampal maps and ventral prefrontal cortex (vPFC) value and goal representations support foraging in continuous spaces. How might hippocampal-vPFC interactions control the balance between behavioral exploration and exploitation? Using fMRI and reinforcement learning modeling, we investigated vPFC and hippocampal responses as humans explored and exploited a continuous one-dimensional space, with out-of-session and out-of-sample replication. The spatial distribution of rewards, or value landscape, modulated activity in the hippocampus and default network vPFC subregions, but not in ventrolateral prefrontal control subregions or medial orbitofrontal limbic subregions.

View Article and Find Full Text PDF

Adolescence is a key period for the maturation of cognitive control during which cortical circuitry is refined through processes such as synaptic pruning, but how these refinements modulate local functional dynamics to support cognition remains only partially characterized. Here, we used data from a longitudinal, adolescent cohort (N = 134 individuals ages 10-31 years, N = 202 total sessions) that completed MRI scans at ultra-high field (7 Tesla). We used resting state fMRI data to compute surface-based regional homogeneity (ReHo)-a measure of time-dependent correlations in fMRI activity between a vertex and its immediate neighbors-as an index of local functional connectivity across the cortex.

View Article and Find Full Text PDF

The human prefrontal cortex (PFC) exhibits markedly protracted developmental plasticity, yet whether reductions in plasticity occur synchronously across prefrontal cortical layers is unclear. Animal studies have shown that intracortical myelin consolidates neural circuits to close periods of plasticity. Here, we use quantitative myelin imaging collected from youth (ages 10-32 years) at ultra-high field (7T) to investigate whether deep and superficial PFC layers exhibit different timeframes of plasticity.

View Article and Find Full Text PDF

Developmental trajectories during the transition from adolescence to adulthood contribute to the establishment of stable, adult forms of operation. Understanding the neural mechanisms underlying this transition is crucial for identifying variability in normal development and the onset of psychiatric disorders, which typically emerge during this time. Habitual behaviors can serve as a model for understanding brain mechanisms underlying the stabilization of adult behavior, while also conferring risk for psychopathologies.

View Article and Find Full Text PDF

Developmental changes in prefrontal cortex (PFC) excitatory (glutamatergic, Glu) and inhibitory (gamma- aminobutryic acid, GABA) neurotransmitter balance (E:I) have been identified during human adolescence, potentially reflecting a critical period of plasticity that supports the maturation of PFC-dependent cognition. Animal models implicate increases in dopamine (DA) in regulating changes in PFC E:I during critical periods of development, however, mechanistic relationships between DA and E:I have not been studied in humans. Here, we used high field (7T) echo planar imaging (EPI) in combination with Magnetic Resonance Spectroscopic Imaging (MRSI) to assess the role of basal ganglia tissue iron-reflecting DA neurophysiology-in longitudinal trajectories of dorsolateral PFC Glu, GABA, and their relative levels (Glu:GABA) and working memory performance from adolescence to adulthood in 153 participants (ages 10-32 years old, 1-3 visits, 272 visits total).

View Article and Find Full Text PDF

The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization.

View Article and Find Full Text PDF

Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests.

View Article and Find Full Text PDF

Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g.

View Article and Find Full Text PDF

Cognitive abilities of primates, including humans, continue to improve through adolescence . While a range of changes in brain structure and connectivity have been documented , how they affect neuronal activity that ultimately determines performance of cognitive functions remains unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive development.

View Article and Find Full Text PDF

The development and refinement of neuronal circuitry allow for stabilized and efficient neural recruitment, supporting adult-like behavioral performance. During adolescence, the maturation of PFC is proposed to be a critical period (CP) for executive function, driven by a break in balance between glutamatergic excitation and GABAergic inhibition (E/I) neurotransmission. During CPs, cortical circuitry fine-tunes to improve information processing and reliable responses to stimuli, shifting from spontaneous to evoked activity, enhancing the SNR, and promoting neural synchronization.

View Article and Find Full Text PDF
Article Synopsis
  • Research highlights a critical gap in understanding long COVID (PASC) in children and emphasizes the need for studies that define its characteristics in this age group.
  • The objective is to identify common prolonged symptoms in children aged 6 to 17 post-SARS-CoV-2 infection, examining differences between school-age kids and adolescents, as well as potential symptom clusters for future research.
  • A multicenter study involved nearly 5,000 participants, revealing that certain symptoms were significantly more prevalent in those with a history of COVID-19 compared to those without.
View Article and Find Full Text PDF

Early adolescent drinking onset is linked to myriad negative consequences. Using the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) baseline to year 8 data, this study (1) leveraged best subsets selection and Cox Proportional Hazards regressions to identify the most robust predictors of adolescent first and regular drinking onset, and (2) examined the clinical utility of drinking onset in forecasting later binge drinking and withdrawal effects. Baseline predictors included youth psychodevelopmental characteristics, cognition, brain structure, family, peer, and neighborhood domains.

View Article and Find Full Text PDF

Heavy alcohol drinking is a major, preventable problem that adversely impacts the physical and mental health of US young adults. Studies seeking drinking risk factors typically focus on young adults who enrolled in 4-year residential college programs (4YCP) even though most high school graduates join the workforce, military, or community colleges. We examined 106 of these understudied young adults (USYA) and 453 4YCPs from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) by longitudinally following their drinking patterns for 8 years from adolescence to young adulthood.

View Article and Find Full Text PDF

Cognitive flexibility exhibits dynamic changes throughout development, with different forms of flexibility showing dissociable developmental trajectories. In this review, we propose that an adolescent-specific mode of flexibility in the face of changing environmental contingencies supports the emergence of adolescent-to-adult gains in cognitive shifting efficiency. We first describe how cognitive shifting abilities monotonically improve from childhood to adulthood, accompanied by increases in brain state flexibility, neural variability, and excitatory/inhibitory balance.

View Article and Find Full Text PDF

Adolescence has been hypothesized to be a critical period for the development of human association cortex and higher-order cognition. A defining feature of critical period development is a shift in the excitation: inhibition (E/I) balance of neural circuitry, however how changes in E/I may enhance cortical circuit function to support maturational improvements in cognitive capacities is not known. Harnessing ultra-high field 7 T MR spectroscopy and EEG in a large, longitudinal cohort of youth (N = 164, ages 10-32 years old, 347 neuroimaging sessions), we delineate biologically specific associations between age-related changes in excitatory glutamate and inhibitory GABA neurotransmitters and EEG-derived measures of aperiodic neural activity reflective of E/I balance in prefrontal association cortex.

View Article and Find Full Text PDF

Primates exploring and exploiting a continuous sensorimotor space rely on dynamic maps in the dorsal stream. Two complementary perspectives exist on how these maps encode rewards. Reinforcement learning models integrate rewards incrementally over time, efficiently resolving the exploration/exploitation dilemma.

View Article and Find Full Text PDF

Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers.

View Article and Find Full Text PDF

In the perinatal period, reward and cognitive systems begin trajectories, influencing later psychiatric risk. The basal ganglia is important for reward and cognitive processing but early development has not been fully characterized. To assess age-related development, we used a measure of basal ganglia physiology, specifically brain tissue iron, obtained from nT2* signal in resting-state functional magnetic resonance imaging (rsfMRI), associated with dopaminergic processing.

View Article and Find Full Text PDF

Fabry disease (FD) is an X-linked lysosomal storage disease caused by pathogenic variants in the GLA gene. It has a wide range of clinical manifestations, typically related to the specific underlying GLA variant. One of the main features of FD is kidney involvement; therefore, several studies have addressed the prevalence of FD in all types of patients with chronic kidney disease.

View Article and Find Full Text PDF

Theories of human neurobehavioral development suggest executive functions mature from childhood through adolescence, underlying adolescent risk-taking and the emergence of psychopathology. Investigations with relatively small datasets or narrow subsets of measures have identified general executive function development, but the specific maturational timing and independence of potential executive function subcomponents remain unknown. Integrating four independent datasets (N = 10,766; 8-35 years old) with twenty-three measures from seventeen tasks, we provide a precise charting, multi-assessment investigation, and replication of executive function development from adolescence to adulthood.

View Article and Find Full Text PDF
Article Synopsis
  • The study confirmed that structural covariance networks (SCN) from MRI data can identify heavy alcohol users and predict problematic drinking behavior in adolescents and young adults.
  • It utilized data from three independent studies with participants aged 14 to 37, comparing heavy drinkers (cases) to those with low or no alcohol use (controls).
  • Key findings showed that heavy drinkers had distinct brain network characteristics, indicating differences in brain region thickness and connectivity, which could help in understanding alcohol use disorders.
View Article and Find Full Text PDF

Subcortical brain morphometry matures across adolescence and young adulthood, a time when many youth engage in escalating levels of alcohol use. Initial cross-sectional studies have shown alcohol use is associated with altered subcortical morphometry. However, longitudinal evidence of sex-specific neuromaturation and associations with alcohol use remains limited.

View Article and Find Full Text PDF