Publications by authors named "Bashirul Haq"

Transition of global energy market towards an environment-friendly sustainable society requires a profound transformation from fossil fuel to zero carbon emission fuel. To cope with this goal production ofrenewable energy is accelerating worldwide. Research in renewable energy from production and storage to practical utilization requires an organized approach.

View Article and Find Full Text PDF

Hydrogen heralded as a promising renewable and environmentally friendly energy carrier, carries inherent risks owing to its highly flammable nature. A mere 4 % concentration of hydrogen in the air can trigger an explosion. To counteract this peril, a composite material comprising PbO-ZnO (2 : 1) was synthesized, characterized, and subsequently employed to fabricate a hydrogen sensing device.

View Article and Find Full Text PDF

Green enhanced oil recovery (GEOR) is an environmentally friendly enhanced oil recovery (EOR) process involving the injection of green fluids to improve macroscopic and microscopic sweep efficiencies while boosting tertiary oil production. Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon dots have gained interest for their superior ability to increase oil recovery. These particles have been successfully tested in EOR, although they are expensive and do not extend to GEOR.

View Article and Find Full Text PDF

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities.

View Article and Find Full Text PDF

Green enhanced oil recovery (GEOR) is an eco-friendly EOR technique involving the injection of specific green fluids to improve macroscopic and microscopic sweep efficiencies, boosting residual oil production. The environmentally friendly surfactant-polymer (SP) flood is successfully tested in a sandstone reservoir. However, the applicability of the SP method does not extend to carbonate reservoirs yet and requires comprehensive investigation.

View Article and Find Full Text PDF

A series of UV-protected coatings were prepared using cerium-oxide-functionalized oil fly ash (-OFA-CeO) in waterborne polyurethane (WBPU) dispersions. Three monomers, namely, poly(tetramethyleneoxide glycol) (PTMG), polydimethylsiloxane-hydroxy terminated (PDMS) and 4,4-dicyclohexylmethane diisocyanate (HMDI), were used to pre-mix with -OFA-CeO separately, followed by the synthesis of WBPU/-OFA-CeO dispersions. The -OFA-CeO distribution and enrichment into any part (top/bottom/bulk) of the coating was strongly affected by the pre-mixing of -OFA-CeO.

View Article and Find Full Text PDF

Green enhanced oil recovery is an oil recovery process involving the injection of specific environmentally friendly fluids (liquid chemicals and gases) that effectively displace oil due to their ability to alter the properties of enhanced oil recovery. In the microbial enhanced oil recovery (MEOR) process, microbes produce products such as surfactants, polymers, ketones, alcohols, and gases. These products reduce interfacial tension and capillary force, increase viscosity and mobility, alter wettability, and boost oil production.

View Article and Find Full Text PDF