Publications by authors named "Baiyi Quan"

The PINK1/Parkin pathway targets damaged mitochondria for degradation via mitophagy. Genetic evidence implicates impaired mitophagy in Parkinson's disease, making its pharmacological enhancement a promising therapeutic strategy. Here, we characterize two mitophagy activators: a novel Parkin activator, FB231, and the reported PINK1 activator MTK458.

View Article and Find Full Text PDF

The Voltage Dependent Anion Channel (VDAC) is the most ubiquitous protein in the mitochondrial outer membrane. This channel facilitates the flux of water-soluble metabolites and ions like calcium across the mitochondrial outer membrane. Beyond this canonical role, VDAC has been implicated, through interactions with protein partners, in several cellular processes such as apoptosis, calcium signaling, and lipid metabolism.

View Article and Find Full Text PDF

The ubiquitin-conjugating enzyme 13 (Ubc13) has an essential function and putative role in artemisinin activity against . Ubc13 conjugates lysine 63-linked ubiquitin (K63-Ub) to proteins, but the role of this modification in remains largely unknown. Herein, we characterize and deploy NSC697923 to interrogate PfUbc13 function.

View Article and Find Full Text PDF

All cells respond to changes in both their internal milieu and the environment around them through the regulation of their genes. Despite decades of effort, there remain huge gaps in our knowledge of both the function of many genes (the so-called y-ome) and how they adapt to changing environments via regulation. Here we describe a joint experimental and theoretical dissection of the regulation of a broad array of over 100 biologically interesting genes in across 39 diverse environments, permitting us to discover the binding sites and transcription factors that mediate regulatory control.

View Article and Find Full Text PDF

All cells respond to changes in both their internal milieu and the environment around them through the regulation of their genes. Despite decades of effort, there remain huge gaps in our knowledge of both the function of many genes (the so-called y-ome) and how they adapt to changing environments via regulation. Here we describe a joint experimental and theoretical dissection of the regulation of a broad array of over 100 biologically interesting genes in across 39 diverse environments, permitting us to discover the binding sites and transcription factors that mediate regulatory control.

View Article and Find Full Text PDF

Proteomic analysis plays an essential role in biology with several methodologies available for sample preparation and analysis. This study evaluates and compares various cell lysis and protein digestion protocols for bottom-up proteomics using HeLa S3 cells. We assessed two physical disruption methods to homogenize cells-sonication and BeatBox-alongside four digestion protocols.

View Article and Find Full Text PDF

Drug efflux-a process primarily facilitated by efflux pumps such as multidrug resistance proteins (MRPs)-plays a pivotal role in cellular resistance to chemotherapies. Conventional approaches to assess drug efflux are predominantly conducted in vitro and often lack pump specificity. Here we report the bioorthogonal reporter inhibiting efflux (BRIEF) strategy, which enables the recording of pump-specific drug efflux in living cells.

View Article and Find Full Text PDF

The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins.

View Article and Find Full Text PDF

The molecular chaperone heat shock protein 90 (Hsp90) has an essential but largely undefined role in maintaining proteostasis in Plasmodium falciparum, the most lethal malaria parasite. Herein, we identify BX-2819 and XL888 as potent P. falciparum (Pf)Hsp90 inhibitors.

View Article and Find Full Text PDF

Gene expression is controlled via complex regulatory mechanisms involving transcription factors, chromatin modifications, and chromatin regulatory factors. Histone modifications, such as H3K27me3, H3K9ac, and H3K27ac, play an important role in controlling chromatin accessibility and transcriptional output. In vertebrates, the Transcriptional Intermediary Factor 1 (TIF1) family of proteins play essential roles in transcription, cell differentiation, DNA repair, and mitosis.

View Article and Find Full Text PDF

Reported here is the application of three protein folding stability profiling techniques (including the stability of proteins from rates of oxidation, thermal protein profiling, and limited proteolysis approaches) to identify differentially stabilized proteins in six patient-derived colorectal cancer (CRC) cell lines with different oxaliplatin sensitivities and eight CRC patient-derived xenografts (PDXs) derived from two of the patient derived cell lines with different oxaliplatin sensitivities. Compared to conventional protein expression level analyses, which were also performed here, the stability profiling techniques identified both unique and novel proteins and cellular components that differentiated the sensitive and resistant samples including 36 proteins that were differentially stabilized in at least two techniques in both the cell line and PDX studies of oxaliplatin resistance. These 36 differentially stabilized proteins included 10 proteins previously connected to cancer chemoresistance.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) play important roles in modulating the biological functions of proteins. Stoichiometry, which quantifies the modification percentage, is a critical factor for any given PTM. In this work, we developed a chemoproteomic strategy called "STO-MS" to systematically quantify the PTM stoichiometry in complex biological samples.

View Article and Find Full Text PDF

The development of phenotypic models of Parkinson's disease (PD) has enabled screening and identification of phenotypically active small molecules that restore complex biological pathways affected by PD toxicity. While these phenotypic screening platforms are powerful, they do not inherently enable direct identification of the cellular targets of promising lead compounds. To overcome this, chemoproteomic platforms like Thermal Proteome Profiling (TPP) and Stability of Proteins from Rates of Oxidation (SPROX) can be implemented to reveal protein targets of biologically active small molecules.

View Article and Find Full Text PDF

The antihistamine clemastine inhibits multiple stages of the parasite that causes malaria, but the molecular targets responsible for its parasite inhibition were unknown. Here, we applied parallel chemoproteomic platforms to discover the mechanism of action of clemastine and identify that clemastine binds to the TCP-1 ring complex or chaperonin containing TCP-1 (TRiC/CCT), an essential heterooligomeric complex required for de novo cytoskeletal protein folding. Clemastine destabilized all eight TRiC subunits based on thermal proteome profiling (TPP).

View Article and Find Full Text PDF

Recently, several mass-spectrometry- and protein-denaturation-based proteomic methods have been developed to facilitate protein target discovery efforts in drug mode-of-action studies. These methods, which include the stability of proteins from rates of oxidation (SPROX), pulse proteolysis (PP), chemical denaturation and protein precipitation (CPP), and thermal proteome profiling (TPP) techniques, have been used in an increasing number of applications in recent years. However, while the advantages and disadvantages to using these different techniques have been reviewed, the analytical characteristics of these methods have not been directly compared.

View Article and Find Full Text PDF

-linked GlcNAcylation (-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of -GlcNAcylated proteins, we developed a quantitative time-resolved -linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an -GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 -GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of -GlcNAc or degradation of protein backbones.

View Article and Find Full Text PDF

Redox imbalance in cells induces lipid peroxidation and generates a class of highly reactive metabolites known as lipid-derived electrophiles (LDEs) that can modify proteins and affects their functions. Identifying targets of LDEs is critical to understand how such modifications are functionally implicated in oxidative-stress associated diseases. Here we report a quantitative chemoproteomic method to globally profile protein targets and sites modified by LDEs.

View Article and Find Full Text PDF