Publications by authors named "B Sumith Jayasinghe"

In contrast to mammals, the blood from other vertebrates such as fish contains nucleated red cells. Using a fathead minnow ( Pimephales promelas) oligonucleotide microarray, we compared altered transcripts in the liver and whole blood after exposure to environmentally relevant concentrations of perfluorooctanesulfonic acid (PFOS) and a mixture of seven types of perfluoro alkyl substances (PFAS), including perfluorooctanoic acid (PFOA). We used quantitative polymerase chain reactions and cell-based assays to confirm the main effects and found that blood responded with a greater number of altered genes than the liver.

View Article and Find Full Text PDF

High-throughput cell assays that detect and integrate the response of multiple chemicals acting via a common mode of action have the potential to enhance current environmental monitoring practices. Establishing the linkage between in vitro and in vivo responses is key to demonstrating that in vitro cell assays can be predictive of ecologically relevant outcomes. The present study investigated the potency of 17β-estradiol (E2), estrone (E1), nonylphenol (NP), and treated wastewater effluent using the readily available GeneBLAzer estrogen receptor transactivation assay and 2 life stages of the inland silverside (Menidia beryllina).

View Article and Find Full Text PDF

Estradiol is a potent sex steroid hormone that controls reproduction and other cellular pathways in fish. It is known to regulate important proteins such as vitellogenin, the egg yolk precursor protein, and zona radiata proteins that form the eggshell for fish eggs. These proteins are made in the liver and transported out into the blood from where they are taken up into the ovary during oogenesis.

View Article and Find Full Text PDF

In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay.

View Article and Find Full Text PDF

In vitro estrogen receptor transactivation assays (ERTAs) are increasingly used to measure the overall estrogenic activity of environmental water samples, which may serve as an indicator of exposure of fish or other aquatic organisms to (xeno)estrogens. Another potential area of application of ERTAs is to assist the monitoring of the potent steroids 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) under the Water Framework Directive (WFD) watch-list mechanism. Chemical analysis of E2 and EE2 is currently hampered by limits of quantification being mostly above the proposed annual average Environmental Quality Standards (AA-EQS) of 0.

View Article and Find Full Text PDF