Publications by authors named "Awet Alem Teklemichael"

Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement.

View Article and Find Full Text PDF

Background: The study of rodent malaria parasites has significantly advanced our understanding of malaria parasite biology and host responses to parasite infections. There are four well-characterized rodent malaria parasite species (Plasmodium yoelii, P. chabaudi, P.

View Article and Find Full Text PDF

Background: Natural products play a key role as potential sources of biologically active substances for the discovery of new drugs. This study aimed to identify secondary metabolites from actinomycete library extracts that are potent against the asexual stages of Plasmodium falciparum (P. falciparum).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used mRNA-containing lipid nanoparticles (mRNA-LNPs) to successfully generate antigen-specific cytotoxic T lymphocytes in mice.
  • * The results indicate that mRNA-LNPs can create protective memory T cells against malaria, suggesting potential for future vaccine development.
View Article and Find Full Text PDF

We report the structural functionalization of the terminal amino group of N -(7-chloroquinolin-4-yl) butane-1,4-diamine, leading to a series of 7-chloro-4-aminoquinoline derivatives, and their evaluation as potent anti-malarial and anti-viral agents. Some compounds exhibited promising anti-malarial effects against the Plasmodium falciparum 3D7 (chloroquine-sensitive) and Dd2 (chloroquine-resistant) strains. In addition, these compounds were assayed in vitro against influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

View Article and Find Full Text PDF

Three phenylpropanoid-conjugated iridoid glucosides, acetylgaertneric acid (1), acetyldehydrogaertneroside (2), and dehydrogaertneric acid (10), together with nine known related iridoid glucosides (3-9, 11, and 12), two coumaroyl alkaloids, one benzenoid, and three flavonoid glucosides were isolated from leaves of Morinda morindoides (Rubiaceae). Structures of these isolated compounds were determined using spectroscopic analysis. Compounds 1-18 and previously isolated compounds (19-29) were evaluated for anti-trypanosomal activity against Trypanosoma cruzi Tulahuen strain (trypomastigote and amastigote) together with cytotoxicity against host cells, new-born mouse heart cells.

View Article and Find Full Text PDF

Two phenylpropanoid-conjugated iridoids, deglucosyl gaertneroside (1) and morindoidin (2), were isolated from the leaves of Morinda morindoides (Rubiaceae) by activity-guided fractionation using an anti-malarial activity assay. The known related iridoids molucidin (3) and prismatomerin (4), two lignans, abscisic acid, two megastigmanes, and two flavonol glycosides were also identified. The structures of isolated compounds were elucidated using spectroscopic analysis.

View Article and Find Full Text PDF

Background: Herbal medicine has been a rich source of new drugs exemplified by quinine and artemisinin. In this study, a variety of Japanese traditional herbal medicine ('Kampo') were examined for their potential anti-malarial activities.

Methods: A comprehensive screening methods were designed to identify novel anti-malarial drugs from a library of Kampo herbal extracts (n = 120) and related compounds (n = 96).

View Article and Find Full Text PDF

The rapid spread of strains of malaria parasites that are resistant to several drugs has threatened global malaria control. Hence, the aim of this study was to predict the antimalarial activity of chemical compounds that possess anti-hemozoin-formation activity as a new means of antimalarial drug discovery. After the initial anti-hemozoin-formation high-throughput screening (HTS) of 9,600 compounds, a total of 224 hit compounds were identified as hemozoin inhibitors.

View Article and Find Full Text PDF