We developed a cost-effective enzyme-based rRNA-depletion method tailored for , addressing the limitations of existing commercial kits and the lack of peer-reviewed alternatives. Our method employs single-stranded DNA probes complementary to rRNA, forming DNA-RNA hybrids. These hybrids are then degraded using the RNase H enzyme, effectively removing rRNA and enriching all non-ribosomal RNAs, including mRNA, lncRNA and small RNA.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on , it was placed in O complete human serum with butanol (1% /).
View Article and Find Full Text PDFTransposase-accessible chromatin by sequencing (ATAC-seq) has emerged as an advantageous technique to assess chromatin accessibility owing to the robustness of "tagmentation" process and a relatively faster library preparation. A comprehensive ATAC-seq protocol from Drosophila brain tissue is currently unavailable. Here, we have provided a detailed protocol of ATAC-seq assay from Drosophila brain tissue.
View Article and Find Full Text PDFBackground: Illumina sequencing platform requires base diversity in the initial 11 cycles for efficient cluster identification and colour matrix estimation. This limitation yields low-quality data for amplicon libraries having homogeneous base composition. Spike-in of PhiX library ensures base diversity but reduces the overall number of sequencing reads for data analysis.
View Article and Find Full Text PDFVertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant and TAD.
View Article and Find Full Text PDFBackground: Small non-coding (s)RNAs are involved in the negative regulation of gene expression, playing critical roles in genome integrity, development and metabolic pathways. Targeting of RNAs by ribonucleoprotein complexes of sRNAs bound to Argonaute (AGO) proteins results in cleaved RNAs having precise and predictable 5` ends. While tools to study sliced bits of RNAs to confirm the efficiency of sRNA-mediated regulation are available, they are sub-optimal.
View Article and Find Full Text PDFThe ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa.
View Article and Find Full Text PDFBackground: Africa has one of the highest incidences of gonorrhea. is gaining resistance to most of the available antibiotics, compromising treatment across the world. Whole-genome sequencing (WGS) is an efficient way of predicting AMR determinants and their spread in the population.
View Article and Find Full Text PDFMeta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2.
View Article and Find Full Text PDFPhosphoinositides (PI) are key regulators of cellular organization in eukaryotes and genes that tune PI signaling are implicated in human disease mechanisms. Biochemical analyses and studies in cultured cells have identified a large number of proteins that can mediate PI signaling. However, the role of such proteins in regulating cellular processes and development in metazoans remains to be understood.
View Article and Find Full Text PDFSequencing transposon mutant libraries have been pivotal in annotating essential and non-essential genes in bacteria. This is particularly very helpful in the case of Mycobacterium tuberculosis with a large part of its genome without known function. It is not known whether there are any variations in the essentiality states as a function of optimal growth in the absence of any selection pressure.
View Article and Find Full Text PDFMicroRNAs are a class of non-coding small RNAs involved in the negative regulation of gene expression, which play critical roles in developmental and metabolic pathways. Studies in several plants have identified a few microRNAs and other small RNAs that target regulators of the phenylpropanoid metabolic pathway called the MYB transcription factors. However, it is not well understood how sRNA-mediated regulation of MYBs influences the accumulation of specific secondary metabolites.
View Article and Find Full Text PDFObjective: To characterize the in vitro replication fitness, viral diversity, and phylogeny of dengue viruses (DENV) isolated from Indian patients.
Methods: DENV was isolated from whole blood collected from patients by passaging in cell culture. Passage 3 viruses were used for growth kinetics in C6/36 mosquito cells.
Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays.
View Article and Find Full Text PDFAdvanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%.
View Article and Find Full Text PDFAging (Albany NY)
October 2014
Dietary restriction (DR) increases life span and delays the onset of age-related diseases across species. However, the molecular mechanisms have remained relatively unexplored in terms of gene regulation. InC.
View Article and Find Full Text PDFJ Plant Biochem Biotechnol
October 2011
Pigeonpea () is an important grain legume of the Indian subcontinent, South-East Asia and East Africa. More than eighty five percent of the world pigeonpea is produced and consumed in India where it is a key crop for food and nutritional security of the people. Here we present the first draft of the genome sequence of a popular pigeonpea variety 'Asha'.
View Article and Find Full Text PDFBackground: Unigene sequences constitute a rich source of functionally relevant microsatellites. The present study was undertaken to mine the microsatellites in the available unigene sequences of sugarcane for understanding their constitution in the expressed genic component of its complex polyploid/aneuploid genome, assessing their functional significance in silico, determining the extent of allelic diversity at the microsatellite loci and for evaluating their utility in large-scale genotyping applications in sugarcane.
Results: The average frequency of perfect microsatellite was 1/10.
Identification of genes for quantitative traits is difficult using any single approach due to complex inheritance of the traits and limited resolving power of the individual techniques. Here a combination of genetic mapping and bulked transcriptome profiling was used to narrow down the number of differentially expressed salt-responsive genes in rice in order to identify functional polymorphism of genes underlying the quantitative trait loci (QTL). A population of recombinant inbred lines (RILs) derived from cross between salt-tolerant variety CSR 27 and salt-sensitive variety MI 48 was used to map QTL for salt ion concentrations in different tissues and salt stress susceptibility index (SSI) for spikelet fertility, grain weight, and grain yield.
View Article and Find Full Text PDFTheor Appl Genet
January 2009
Genomic microsatellite markers are capable of revealing high degree of polymorphism. Sugarcane (Saccharum sp.), having a complex polyploid genome requires more number of such informative markers for various applications in genetics and breeding.
View Article and Find Full Text PDFThe high-quality rice genome sequence is serving as a reference for comparative genome analysis in crop plants, especially cereals. However, early comparisons with bread wheat showed complex patterns of conserved synteny (gene content) and colinearity (gene order). Here, we show the presence of ancient duplicated segments in the progenitor of wheat, which were first identified in the rice genome.
View Article and Find Full Text PDF