Publications by authors named "Avneesh Singh"

Following our previous experience with cardiac xenotransplantation of a genetically modified porcine heart into a live human, we sought to achieve improved results by selecting a healthier recipient and through more sensitive donor screening for potential zoonotic pathogens. Here we transplanted a 10-gene-edited pig heart into a 58-year-old man with progressive, debilitating inotrope-dependent heart failure due to ischemic cardiomyopathy who was not a candidate for standard advanced heart failure therapies. He was maintained on a costimulation (anti-CD40L, Tegoprubart) blockade-based immunomodulatory regimen.

View Article and Find Full Text PDF

Background: Improvement in gene modifications of donor pigs has led to the prevention of early cardiac xenograft rejection and significantly prolonged cardiac xenograft survival in both heterotopic and orthotopic preclinical non-human primate (NHP) models. This progress formed the basis for FDA approval for compassionate use transplants in two patients.

Methods: Based on our earlier report of 9-month survival of seven gene-edited (7-GE) hearts transplanted (life-supporting orthotopic) in baboons, we transplanted 10 gene-edited pig hearts into baboons (n = 4) using non-ischemic continuous perfusion preservation (NICP) and immunosuppression regimen based on co-stimulation blockade by anti-CD40 monoclonal antibody.

View Article and Find Full Text PDF

The 2023 IXA conference, hosted in San Diego, CA, brimmed with excitement against the backdrop of recent innovations in both the pre-clinical and clinical realms with several first-in-human applications of xenotransplantation. The theme, "Pigs are flying," alluded to the adage that xenotransplantation would only become a clinical reality "when pigs fly," suggesting a day that might never come. The event witnessed significant attendance, with 600 participants-the highest in the history of an IXA-IPITA joint congress.

View Article and Find Full Text PDF

Purpose Of Review: The first successful pig to human cardiac xenotransplantation in January 2022 represented a major step forward in the fields of heart failure, immunology, and applied genetic engineering, using a 10-gene edited (GE) pig. This review summarizes the evolution of preclinical modelling data which informed the use of each of the 10 genes modified in the 10-GE pig: GGTA1, Β4GalNT2, CMAH, CD46, CD55, TBM, EPCR, CD47, HO-1, and growth hormone receptor.

Recent Findings: The translation of the 10-GE pig from preclinical modelling to clinical compassionate xenotransplant use was the culmination of decades of research combating rejection, coagulopathy, inflammation, and excessive xenograft growth.

View Article and Find Full Text PDF

Background: A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome.

Methods: Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit.

View Article and Find Full Text PDF

A summary of the scientific rationale of the advancements that led to the first genetically modified pig-to-human cardiac xenotransplantation is lacking in a complex and rapidly evolving field. Here, we aim to aid the general readership in the understanding of the gradual progression of cardiac (xeno)transplantation research, the immunobiology of cardiac xenotransplantation (including the latest immunosuppression, cardiac preservation and genetic engineering required for successful transplantation) and the regulatory landscape related to the clinical application of cardiac xenotransplantation for people with end-stage heart failure. Finally, we provide an overview of the outcomes and lessons learned from the first genetically modified pig-to-human cardiac heart xenotransplantation.

View Article and Find Full Text PDF

Cardiac xenotransplantation from swine has been proposed to "bridge the gap" in supply for heart failure patients requiring transplantation. Recent preclinical success using genetically modified pig donors in baboon recipients has demonstrated survival greater than 6 mo, with a modern understanding of xenotransplantation immunobiology and continued experience with large animal models of cardiac xenotransplantation. As a direct result of this expertise, the Food and Drug Administration approved the first in-human transplantation of a genetically engineered cardiac xenograft through an expanded access application for a single patient.

View Article and Find Full Text PDF

Effective immune responses require antigen presentation by major histocompatibility complexes with cognate T-cell receptor and antigen-independent costimulatory signaling for T-cell activation, proliferation, and differentiation. Among several costimulatory signals, CD40-CD40L is of special interest to the transplantation community because it plays a vital role in controlling or regulating humoral and cellular immunity. Blockade of this pathway has demonstrated inhibition of donor-reactive T-cell responses and prolonged the survival of transplanted organs.

View Article and Find Full Text PDF

We have been testing genetically engineered (GE) pig hearts and optimizing immunosuppression (IS) in non-human primates (NHPs) since 2005. We demonstrate how we translated this preclinical investigation into a US Food and Drug Administration (FDA)-approved clinical cardiac xenotransplantation. First, genetically engineered (GE) pig hearts were transplanted into the abdomen of NHP along with IS, which included anti-CD20 and anti-CD40-based co-stimulation blockade antibodies.

View Article and Find Full Text PDF

Recent initiation of the first FDA-approved cardiac xenotransplantation suggests xenotransplantation could soon become a therapeutic option for patients unable to undergo allotransplantation. Until xenotransplantation is widely applied in clinical practice, consideration of benefit versus risk and approaches to management of clinical xenografts will based at least in part on observations made in experimental xenotransplantation in non-human primates. Indeed, the decision to proceed with clinical trials reflects significant progress in last few years in experimental solid organ and cellular xenotransplantation.

View Article and Find Full Text PDF

A 57-year-old man with nonischemic cardiomyopathy who was dependent on venoarterial extracorporeal membrane oxygenation (ECMO) and was not a candidate for standard therapeutics, including a traditional allograft, received a heart from a genetically modified pig source animal that had 10 individual gene edits. Immunosuppression was based on CD40 blockade. The patient was weaned from ECMO, and the xenograft functioned normally without apparent rejection.

View Article and Find Full Text PDF

Survival of pig cardiac xenografts in a non-human primate (NHP) model has improved significantly over the last 4 years with the introduction of costimulation blockade based immunosuppression (IS) and genetically engineered (GE) pig donors. The longest survival of a cardiac xenograft in the heterotopic (HHTx) position was almost 3 years and only rejected when IS was stopped. Recent reports of cardiac xenograft survival in a life-sustaining orthotopic (OHTx) position for 6 months is a significant step forward.

View Article and Find Full Text PDF

We report orthotopic (life-supporting) survival of genetically engineered porcine cardiac xenografts (with six gene modifications) for almost 9 months in baboon recipients. This work builds on our previously reported heterotopic cardiac xenograft (three gene modifications) survival up to 945 days with an anti-CD40 monoclonal antibody-based immunosuppression. In this current study, life-supporting xenografts containing multiple human complement regulatory, thromboregulatory, and anti-inflammatory proteins, in addition to growth hormone receptor knockout (KO) and carbohydrate antigen KOs, were transplanted in the baboons.

View Article and Find Full Text PDF

Post-transplantation cardiac xenograft growth in an orthotopic pig to baboon model is a life-limiting phenomenon that is poorly understood. Possible causes of growth include both intrinsic and extrinsic etiologies. Extrinsic causes are thought to be attributed to maladaptive hypertrophy as a result of increased mean arterial pressure experienced by the cardiac xenograft after transplantation.

View Article and Find Full Text PDF

Objective: Genetically engineered pigs are thought to be an alternative organ source for patients in end-stage heart failure unable to receive a timely allograft. However, cardiac xenografts exhibit growth and diastolic heart failure within 1 month after transplantation. Grafts function for up to 6 months, but only after administration of temsirolimus and afterload-reducing agents to reduce this growth.

View Article and Find Full Text PDF

Background: Perioperative cardiac xenograft dysfunction (PCXD) describes a rapidly developing loss of cardiac function after xenotransplantation. PCXD occurs despite genetic modifications to increase compatibility of the heart. We report on the incidence of PCXD using static preservation in ice slush following crystalloid or blood-based cardioplegia versus continuous cold perfusion with XVIVO heart solution (XHS) based cardioplegia.

View Article and Find Full Text PDF

Heterotopic cardiac transplantation in the intra-abdominal position in a large animal model has been essential in the progression of the field of cardiac transplantation. Our group has over 10 years of experience in cardiac xenotransplantation with pig to baboon models, the longest xenograft of which survived over 900 days, with rejection only after reducing immunosuppression. This article aims to clarify our approach to this model in order to allow others to share success in long-term survival.

View Article and Find Full Text PDF

Background: Perioperative cardiac xenograft dysfunction (PCXD) was described by McGregor and colleagues as a major barrier to the translation of heterotopic cardiac xenotransplantation into the orthotopic position. It is characterized by graft dysfunction in the absence of rejection within 24 to 48 hours of transplantation. We describe our experience with PCXD at a single program.

View Article and Find Full Text PDF

Heterotopic cardiac xenotransplantation in the intra-abdominal position has been studied extensively in a pig-to-baboon model to define the optimal donor genetics and immunosuppressive regimen to prevent xenograft rejection. Extensive investigation using this model is a necessary stepping stone toward the development of a life-supporting animal model, with the ultimate goal of demonstrating suitability for clinical cardiac xenotransplantation trials. Aspects of surgical technique, pre- and post-operative care, graft monitoring, and minimization of infectious risk have all required refinement and optimization of heterotopic cardiac xenotransplantation over time.

View Article and Find Full Text PDF

A combination of genetic manipulations of donor organs and target-specific immunosuppression is instrumental in achieving long-term cardiac xenograft survival. Recently, results from our preclinical pig-to-baboon heterotopic cardiac xenotransplantation model suggest that a three-pronged approach is successful in extending xenograft survival: (a) α-1,3-galactosyl transferase (Gal) gene knockout in donor pigs (GTKO) to prevent Gal-specific antibody-mediated rejection; (b) transgenic expression of human complement regulatory proteins (hCRP; hCD46) and human thromboregulatory protein thrombomodulin (hTBM) to avoid complement activation and coagulation dysregulation; and (c) effective induction and maintenance of immunomodulation, particularly through co-stimulation blockade of CD40-CD40L pathways with anti-CD40 (2C10R4) monoclonal antibody (mAb). Using this combination of manipulations, we reported significant improvement in cardiac xenograft survival.

View Article and Find Full Text PDF

Intracranial aspergillosis is rare in immunocompetent patients. Its presentation is subtle, often without any diagnostic characteristics, and is frequently mistaken for tuberculous meningitis, pyogenic abscess, or a space-occupying lesion. The authors report a case of diffuse intracranial aspergillosis, in an immunocompetent 34-year-old male, that mimicked a meningioma on preoperative imaging.

View Article and Find Full Text PDF

The field of cardiac xenotransplantation has entered an exciting era due to recent advances in the field. Although several hurdles remain, the use of rapidly evolving transgenic technology has the potential to address current allogeneic donor pool constraints and mechanical circulatory system device limitations. The success of xenotransplantation will undoubtedly be dependent on specific patient selection criteria.

View Article and Find Full Text PDF