In sickle cell disease (SCD), the β6 substitution in the β-globin leads to red blood cell sickling. The transplantation of autologous, genetically modified hematopoietic stem and progenitor cells (HSPCs) is a promising treatment option for patients with SCD. We completed a Phase I/II open-label clinical trial (NCT03964792) for patients with SCD using a lentiviral vector (DREPAGLOBE) expressing a potent anti-sickling β-globin.
View Article and Find Full Text PDFBlood Cells Mol Dis
May 2024
Background: Erythropoiesis is a complex developmental process in which a hematopoietic stem cell undergoes serial divisions and differentiates through well-defined stages to give rise to red blood cells. Over the last decades, several protocols have been developed to perform ex vivo erythroid differentiation, allowing investigation into erythropoiesis and red cell production in health and disease.
Results: In the current study, we compared the two commonly used protocols by assessing the differentiation kinetics, synchronisation, and cellular yield, using molecular and cellular approaches.
Curr Opin Hematol
May 2021
Purpose Of Review: Sickle cell disease (SCD) is a hemolytic anemia caused by a point mutation in the β globin gene leading to the expression of an abnormal hemoglobin (HbS) that polymerizes under hypoxic conditions driving red cell sickling. Circulating red cells have been extensively characterized in SCD, as their destruction and removal from peripheral blood are the major contributors to anemia. However, few reports showed cellular abnormalities during erythropoiesis in SCD, suggesting that anemia could also be influenced by defects of central origin.
View Article and Find Full Text PDFHaematologica
October 2021
While ineffective erythropoiesis has long been recognized as a key contributor to anemia in thalassemia, its role in anemia of sickle cell disease (SCD) has not been critically explored. Using in vitro and in vivo derived human erythroblasts we assessed the extent of ineffective erythropoiesis in SCD. Modeling the bone marrow hypoxic environment, we found that hypoxia induces death of sickle erythroblasts starting at the polychromatic stage, positively selecting cells with high levels of fetal hemoglobin (HbF).
View Article and Find Full Text PDF