Publications by authors named "Attilio Di Pietro"

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,β-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised.

View Article and Find Full Text PDF

The resistance of tumors against anticancer drugs is a major impediment for chemotherapy. Tumors often develop multidrug resistance as a result of the cellular efflux of chemotherapeutic agents by ABC transporters such as P-glycoprotein (ABCB1/P-gp), Multidrug Resistance Protein 1 (ABCC1/MRP1), or Breast Cancer Resistance Protein (ABCG2/BCRP). By screening a chemolibrary comprising 140 compounds, we identified a set of naturally occurring aurones inducing higher cytotoxicity against P-gp-overexpressing multidrug-resistant (MDR) cells versus sensitive (parental, non-P-gp-overexpressing) cells.

View Article and Find Full Text PDF

Two series of piperazinyl-pyrrolo[1,2-]quinoxaline derivatives were prepared a Buchwald-Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of overexpressed in a strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p.

View Article and Find Full Text PDF

Resveratrol has been proposed to prevent tumor growth and the different steps of carcinogenesis; nevertheless, these biological effects are sometimes discordant between different cell types. Several hypotheses and works have suggested that the metabolism of resveratrol could be at the origin of a different cellular response. We show here, using colorectal tumor cell lines, that the biological effects of RSV result mainly from its carriage by carriers of the superfamily of ABC transporter, i.

View Article and Find Full Text PDF

Aim: Resistance against antifungals used for Candida albicans (Ca) treatment is mediated by two multidrug transporters, Mdr1p and Cdr1p, which are of enormous interest to the development of modulators combined with antifungals.

Experimental: A set of chalcones was synthesized by condensation reactions in laboratory and was then subject to biological assays to evaluate the effects on different yeast strains.  Results: The obtained chalcones were screened using the checkerboard liquid chemosensitization assays.

View Article and Find Full Text PDF

A new series of amphiphilic η-areneruthenium(II) compounds containing phenylazo ligands (group I: compounds 1a, 1b, 2a and 2b) and phenyloxadiazole ligands (group II: compounds 3a, 3b, 4a and 4b) were synthesized and characterized for their anti-glioblastoma activity. The effects of the amphiphilic η-areneruthenium(II) complexes on the viability of three human glioblastoma cell lines, U251, U87MG and T98G, were evaluated. The azo-derivative ruthenium complexes (group I) showed high cytotoxicity to all cell lines, whilst most oxadiazole-derivative complexes (group II) were less cytotoxic, except for compound 4a.

View Article and Find Full Text PDF

Macrocyclic diterpenes were previously found to be able to modulate the efflux pump activity of Candida albicans multidrug transporters. Most of these compounds were jatrophanes, but only a few number of lathyrane-type diterpenes was evaluated. Therefore, the aim of this study was to evaluate the ability of nineteen structurally-related lathyrane diterpenes (1-19) to overcome the drug-efflux activity of Cdr1p and Mdr1p transporters of C.

View Article and Find Full Text PDF

With the aim to develop anticancer agents acting selectively against resistant tumor cells, we investigated ferrocene embedded into chalcone, aurone and flavone skeletons. These compounds were conceived and then investigated based on the concept of collateral sensitivity, where the target is the Achilles Heel of cancer cells overexpressing the multidrug ABC transporter MRP1. The 14 synthesized compounds were evaluated for their ability to induce efflux of glutathione (GSH) from tumor cells overexpressing MRP1.

View Article and Find Full Text PDF

Purpose: The chromone derivative MBL-II-141, specifically designed to inhibit ABCG2, was previously demonstrated to combine strong inhibition potency, low toxicity and good efficiency in reversing resistance to irinotecan in a xenografted mouse model. Here, the pharmacokinetic interactions in mice between irinotecan, its active metabolite SN-38 and MBL-II-141 were characterized quantitatively in the blood and in the brain.

Methods: Compartmental models were used to fit the data.

View Article and Find Full Text PDF

Twenty-nine jatrophane esters (1-10, 12-30) and one lathyrane (11) diterpenoid ester isolated from Euphorbia species were evaluated for their capacity to inhibit drug-efflux activities of the primary ABC transporter CaCdr1p and the secondary MFS transporter CaMdr1p of Candida albicans, in yeast strains overexpressing the corresponding transporter. These diterpenoid esters were obtained from Euphorbia semiperfoliata (1-10), E. insularis (11), and E.

View Article and Find Full Text PDF

MRP1 overexpression in multidrug-resistant cancer cells has been shown to be responsible for collateral sensitivity to some flavonoids that stimulate a huge MRP1-mediated GSH efflux. This massive GSH depletion triggers the death of these cancer cells. We describe here that bivalent flavonoid dimers strikingly stimulate such MRP1-mediated GSH efflux and trigger a 50-100 fold more potent cell death than their corresponding monomers.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells often adapt to survive chemotherapy by using mechanisms like overexpressing ATP-binding cassette (ABC) efflux pumps, which causes multidrug resistance (MDR).
  • Recent strategies have focused on using collateral sensitivity (CS), where drug-resistant cancer cells exhibit unexpected vulnerability to specific compounds, highlighting MRP1 as a critical target.
  • The review assesses inhibitors of MRP1 and their potential to exploit the cell's redox balance and glutathione translocation to develop new therapies that effectively target and eliminate resistant cancer cells.
View Article and Find Full Text PDF

Toxicity of the SYD-1 mesoionic compound (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) was evaluated on human liver cancer cells (HepG2) grown in either high glucose (HG) or galactose (GAL) medium, and also on suspended cells kept in HG medium. SYD-1 was able to decrease the viability of cultured HepG2 cells in a dose-dependent manner, as assessed by MTT, LDH release and dye with crystal violet assays, but no effect was observed on suspended cells after 1-40 min of treatment. Respiration analysis was performed after 2 min (suspended cells) or 24 h (cultured cells) of treatment: no change was observed in suspended cells, whereas SYD-1 inhibited as well basal, leak and uncoupled states of the respiration in cultured cells with HG medium.

View Article and Find Full Text PDF

Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of anticancer compounds, contributing to multidrug resistance (MDR). Inhibition of ABCG2-mediated transport is then considered a promising strategy for overcoming MDR in tumors. We recently identified a chromone derivative, namely MBL-II-141 as a selective ABCG2 inhibitor, with relevant in vivo activity.

View Article and Find Full Text PDF

Thirteen macrocyclic diterpenes (1-13) of the jatrophane and lathyrane types, either isolated from Euphorbia species or obtained by chemical derivatization, were evaluated for their ability to inhibit the drug efflux activity of Candida albicans CaCdr1p and CaMdr1p multidrug transporters overexpressed in a Saccharomyces cerevisiae strain. Their inhibitory potential was assessed through a functional assay of Nile Red accumulation monitored by flow cytometry. A chemosensitization assay, using the checkerboard method, was also performed with the active compounds in order to evaluate their type of interaction with fluconazole.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in a deficiency in chloride channel activity. In this study, extracellular vesicles (EVs), microvesicles, and exosomes were used as vehicles to deliver exogenous CFTR glycoprotein and its encoding mRNA (mRNA(GFP-CFTR)) to CF cells to correct the CFTR chloride channel function. We isolated microvesicles and exosomes from the culture medium of CFTR-positive Calu-3 cells, or from A549 cells transduced with an adenoviral vector overexpressing a GFP-tagged CFTR (GFP-CFTR).

View Article and Find Full Text PDF

Hepatocellular carcinoma is the third most common cause of cancer-related deaths worldwide. Furthermore, the existing pharmacological-based treatments are insufficiently effective and generate many side effects. Hispidulin (6-methoxy-5,7,4'-trihydroxyflavone) is a flavonoid found in various medicinal herbs that present antineoplastic properties.

View Article and Find Full Text PDF

Ketonic indeno[1,2-b]indole-9,10-dione derivatives, initially designed as human casein kinase II (CK2) inhibitors, were recently shown to be converted into efficient inhibitors of drug efflux by the breast cancer resistance protein ABCG2 upon suited substitutions including a N (5)-phenethyl on C-ring and hydrophobic groups on D-ring. A series of ten phenolic and seven p-quinonic derivatives were synthesized and screened for inhibition of both CK2 and ABCG2 activities. The best phenolic inhibitors were about threefold more potent against ABCG2 than the corresponding ketonic derivatives, and showed low cytotoxicity.

View Article and Find Full Text PDF

In this work, we evaluated the cytotoxicity of mesoionic 4-phenyl-5-(2-Y, 4-X or 4-X-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivatives (MI-J: X=OH, Y=H; MI-D: X=NO2, Y=H; MI-4F: X=F, Y=H; MI-2,4diF: X=Y=F) on human hepatocellular carcinoma (HepG2), and non-tumor cells (rat hepatocytes) for comparison. MI-J, M-4F and MI-2,4diF reduced HepG2 viability by ~ 50% at 25 μM after 24-h treatment, whereas MI-D required a 50 μM concentration, as shown by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The cytotoxicity was confirmed with lactate dehydrogenase assay, of which activity was increased by 55, 24 and 16% for MI-J, MI-4F and MI-2,4diF respectively (at 25 μM after 24 h).

View Article and Find Full Text PDF

Chalcones are natural compounds found in plants, fruits and vegetables. This class of compounds has shown many biological activities including antioxidant, antimicrobial, anti-inflammatory, antifungal and antihypertensive, among others. In cancer, it has been reported that chalcones interfere in several points of the signal transduction pathways related to cellular proliferation, angiogenesis, metastasis, apoptosis and the reversal of multidrug resistance.

View Article and Find Full Text PDF

Microtubule drugs have been widely used in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. Using a cell-based assay designed to probe the microtubule polymerization status, we identified two pharmacophores, CM09 and CM10, as cell-permeable microtubule stabilizing agents.

View Article and Find Full Text PDF

ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor.

View Article and Find Full Text PDF

A series of structurally related jatrophane diterpenoids (1-6), including the new euphosquamosins A-C (4-6), was purified from the Iranian spurge Euphorbia squamosa and evaluated for its capacity to inhibit drug efflux by multidrug transporters of Candida albicans. Three of these compounds showed an interesting profile of activity. In particular, deacetylserrulatin B (2) and euphosquamosin C (6) strongly inhibited the drug-efflux activity of the primary ABC-transporter CaCdr1p, an effect that translated, in a yeast strain overexpressing this transporter, into an increased sensitivity to fluconazole.

View Article and Find Full Text PDF

A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition.

View Article and Find Full Text PDF

A series of chalcones substituted by a quinoxaline unit at the B-ring were synthesized and tested as inhibitors of breast cancer resistance protein-mediated mitoxantrone efflux. These compounds appeared more efficient than analogs containing other B-ring substituents such as 2-naphthyl or 3,4-methylenedioxyphenyl while an intermediate inhibitory activity was obtained with a 1-naphthyl group. In all cases, two or three methoxy groups had to be present on the phenyl A-ring to produce a maximal inhibition.

View Article and Find Full Text PDF