Vacancy-ordered Bi-based perovskites, such as CsBiBr (CBB), exhibit relatively high Lewis acidity due to Bi⁺ centers, providing favorable acidic sites for organic transformations. Coupled with their tuneable optoelectronic properties, these features render CBB an efficient photocatalyst for various acid-catalyzed reactions. In this study, CBB is conjugated with a classical Ru(II)-polypyridyl photosensitizer (RuPS) to form a hybrid material, CBB/RuPS, capable of facilitating thermodynamically favourable inner-sphere electron transfer.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).
View Article and Find Full Text PDFInfectious bacterial biofilms are recalcitrant to most antibiotics compared to their planktonic version, and the lack of appropriate therapeutic strategies for mitigating them poses a serious threat to clinical treatment. A ternary heterojunction material derived from a Bi-based perovskite-TiO hybrid and a [Ru(2,2'-bpy)(4,4'-dicarboxy-2,2'-bpy)] (2,2'-bpy, 2,2'-bipyridyl) as a photosensitizer (RuPS) is developed. This hybrid material is found to be capable of generating reactive oxygen species (ROS)/reactive nitrogen species (RNS) upon solar light irradiation.
View Article and Find Full Text PDF