Genome Biol Evol
March 2024
Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined.
View Article and Find Full Text PDFHow recently originated gene copies become stable genomic components remains uncertain as high sequence similarity of young duplicates precludes their functional characterization. The tandem multigene family Sdic is specific to Drosophila melanogaster and has been annotated across multiple reference-quality genome assemblies. Here we show the existence of a positive correlation between Sdic copy number and total expression, plus vast intrastrain differences in mRNA abundance among paralogs, using RNA-sequencing from testis of four strains with variable paralog composition.
View Article and Find Full Text PDFGene families underlie genetic innovation and phenotypic diversification. However, our understanding of the early genomic and functional evolution of tandemly arranged gene families remains incomplete as paralog sequence similarity hinders their accurate characterization. The Drosophila melanogaster-specific gene family Sdic is tandemly repeated and impacts sperm competition.
View Article and Find Full Text PDF