Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia.
View Article and Find Full Text PDFDevelopment of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogene constitutes an effective approach for the treatment of chronic myeloid leukemia (CML) and/or acute lymphoblastic leukemia. However, currently available inhibitors are limited by drug resistance and toxicity. Ponatinib, a third-generation inhibitor, has demonstrated excellent efficacy against both wild type and mutant BCR-ABL kinase, including the "gatekeeper" T315I mutation that is resistant to all other currently available TKIs.
View Article and Find Full Text PDFUnlabelled: Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs.
View Article and Find Full Text PDFEur Heart J
September 2022
Aims: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption.
View Article and Find Full Text PDFWnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through β-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal.
View Article and Find Full Text PDFModeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants.
View Article and Find Full Text PDFInduced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs.
View Article and Find Full Text PDFGene editing strategies, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9), are revolutionizing biology. However, quantitative and sensitive detection of targeted mutations are required to evaluate and quantify the genome editing outcomes. Here we present AlleleProfileR, a new analysis tool, written in a combination of R and C++, with the ability to batch process the sequence analysis of large and complex genome editing experiments, including the recently developed base editing technologies.
View Article and Find Full Text PDFNOTCH plays a pivotal role during normal development and in congenital disorders and cancer. γ-secretase inhibitors are commonly used to probe NOTCH function, but also block processing of numerous other proteins. We discovered a new class of small molecule inhibitor that disrupts the interaction between NOTCH and RBPJ, which is the main transcriptional effector of NOTCH signaling.
View Article and Find Full Text PDFPurpose Of Review: Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or β-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic.
View Article and Find Full Text PDFThe ability to produce unlimited numbers of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) harboring disease and patient-specific gene variants creates a new paradigm for modeling congenital heart diseases (CHDs) and predicting proarrhythmic liabilities of drug candidates. However, a major roadblock to implementing hiPSC-CM technology in drug discovery is that conventional methods for monitoring action potential (AP) kinetics and arrhythmia phenotypes have been too costly or technically challenging to execute in high throughput. Herein, we describe the first large-scale, fully automated and statistically robust analysis of AP kinetics and drug-induced proarrhythmia in hiPSC-CMs.
View Article and Find Full Text PDFDecellularization offers great potential to the field of tissue engineering, as this method gives rise to scaffold material with the native organ architecture by removing all cellular material and leaving much of the extracellular matrix (ECM) intact. However, many parameters may affect decellularization efficacy and ECM retention and, therefore, decellularization protocols need to be optimized for specific needs. This requires robust methods for comparison of decellularized tissue composition.
View Article and Find Full Text PDFWhen stressed by ageing or disease, the adult human heart is unable to regenerate, leading to scarring and hypertrophy and eventually heart failure. As a result, stem cell therapy has been proposed as an ultimate therapeutic strategy, as stem cells could limit adverse remodelling and give rise to new cardiomyocytes and vasculature. Unfortunately, the results from clinical trials to date have been largely disappointing.
View Article and Find Full Text PDFUnlabelled: Mesenchymal stem cells offer a promising approach to the treatment of myocardial infarction and prevention of heart failure. However, in the clinic, cells will be isolated from patients who may be suffering from comorbidities such as obesity and diabetes, which are known to adversely affect progenitor cells. Here we determined the effect of a high-fat diet (HFD) on mesenchymal stem cells from cardiac and adipose tissues.
View Article and Find Full Text PDF