Publications by authors named "Arnaud Labrousse"

The cellular cortex provides crucial mechanical support and plays critical roles during cell division and migration. The proteins of the ERM family, comprised of ezrin, radixin, and moesin, are central to these processes by linking the plasma membrane to the actin cytoskeleton. To investigate the contributions of the ERM proteins to leukocyte migration, we generated single and triple ERM knockout macrophages.

View Article and Find Full Text PDF

Phagocytosis consists in ingestion and digestion of large particles, a process strictly dependent on actin re-organization. Using synchronized phagocytosis of IgG-coated latex beads (IgG-LB), zymosan or serum opsonized-zymosan, we report the formation of actin structures on both phagocytic cups and closed phagosomes in human macrophages. Their lifespan, size, protein composition and organization are similar to podosomes.

View Article and Find Full Text PDF

HIV-1 infection is frequently associated with low bone density, which can progress to osteoporosis leading to a high risk of fractures. Only a few mechanisms have been proposed to explain the enhanced osteolysis in the context of HIV-1 infection. As macrophages are involved in bone homeostasis and are critical host cells for HIV-1, we asked whether HIV-1-infected macrophages could participate in bone degradation.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) are detrimental in most cancers. Controlling their recruitment is thus potentially therapeutic. We previously found that TAMs perform protease-dependent mesenchymal migration in cancer, while macrophages perform amoeboid migration in other tissues.

View Article and Find Full Text PDF

Macrophage recruitment is essential for tissue homeostasis but detrimental in most cancers. Tumor-associated macrophages (TAMs) play a key role in cancer progression. Controlling their migration is, thus, potentially therapeutic.

View Article and Find Full Text PDF

Infiltration of macrophages into tissue can promote tumour development. Depending on the extracellular matrix architecture, macrophages can adopt two migration modes: amoeboid migration--common to all leukocytes, and mesenchymal migration--restricted to macrophages and certain tumour cells. Here, we investigate the initiating mechanisms involved in macrophage mesenchymal migration.

View Article and Find Full Text PDF

Filamin A (FLNa) is a cross-linker of actin filaments and serves as a scaffold protein mostly involved in the regulation of actin polymerization. It is distributed ubiquitously, and null mutations have strong consequences on embryonic development in humans, with organ defects which suggest deficiencies in cell migration. We have reported previously that macrophages, the archetypal migratory cells, use the protease- and podosome-dependent mesenchymal migration mode in dense three-dimensional environments, whereas they use the protease- and podosome-independent amoeboid mode in more porous matrices.

View Article and Find Full Text PDF

Macrophage tissue infiltration is a hallmark of several pathological situations including cancer, neurodegenerative disorders and chronic inflammation. Hence, deciphering the mechanisms of macrophage migration across a variety of tissues holds great potential for novel anti-inflammatory therapies. Leukocytes have long been thought to migrate through tissues by using the amoeboid (protease-independent) migration mode; however, recent evidence indicates that macrophages can use either the amoeboid or the mesenchymal (protease-dependent) migration mode depending on the environmental constraints.

View Article and Find Full Text PDF

Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move toward phagosomes throughout the cell volume.

View Article and Find Full Text PDF

Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism.

View Article and Find Full Text PDF

Macrophages are a major target of HIV-1 infection. HIV-1-infected macrophages form multinucleated giant cells (MGCs) using poorly elucidated mechanisms. In this study, we show that MGC formation was reduced when human macrophages were infected with nef-deleted HIV-1.

View Article and Find Full Text PDF

Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C.

View Article and Find Full Text PDF

The activity of hematopoietic cell kinase (Hck), a member of the Src family kinases, is modulated by regulatory mechanisms leading to distinct protein conformations with gradual levels of activity. Hck is mostly expressed in phagocytes as two isoforms, p59Hck and p61Hck, which show distinct subcellular localizations and trigger distinct phenotypes when expressed ectopically in fibroblasts. Hck has been reported to be involved in phagocytosis, adhesion and migration, and to regulate formation of membrane protrusions, lysosome exocytosis, podosome formation, and actin polymerization.

View Article and Find Full Text PDF

Secretory lysosomes exist in few cell types, but various mechanisms are involved to ensure their mobilization within the cytoplasm. In phagocytes, lysosome exocytosis is a regulated phenomenon at least in part under the control of the phagocyte-specific and lysosome-associated Src-kinase p61Hck (hematopoietic cell kinase). We show here that p61Hck activation triggered polymerization of actin at the membrane of lysosomes, which resulted in F-actin structures similar to comet tails observed on endocytic vesicles.

View Article and Find Full Text PDF

Podosomes are adhesion structures with an extracellular matrix-degrading capacity mostly found in monocyte-derived cells. We have previously shown that the protein tyrosine kinase Hck, a member of the Src family, triggers the de novo formation of podosome rosettes in a lysosome-dependent manner when expressed in its constitutively active form. Hck is specifically expressed in myeloid cells.

View Article and Find Full Text PDF

Haematopoietic cell kinase (Hck) is a protein tyrosine kinase of the Src family specifically expressed in phagocytes as two isoforms, p59Hck and p61Hck, present at the plasma membrane and lysosomes, respectively. We report that ectopic expression of a constitutively active mutant of p61Hck (p61Hck(ca)) triggered the de novo formation of actin-rich rings at the ventral face of the cells that we characterized as bona fide podosome rosettes, structures involved in cell migration. Their formation required the adaptor domains and the kinase activity of p61Hck, the integrity of microfilament and microtubule networks and concerted action of Cdc42, Rac and Rho.

View Article and Find Full Text PDF