Publications by authors named "Ariel Rodriguez-Frandsen"

: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34 hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing.

View Article and Find Full Text PDF

Molecular responses to influenza A virus (IAV) infections vary between mammalian species. To identify conserved and species-specific molecular responses, we perform a comparative study of transcriptomic data derived from blood cells, primary epithelial cells, and lung tissues collected from IAV-infected humans, ferrets, and mice. The molecular responses in the human host have unique functions such as antigen processing that are not observed in mice or ferrets.

View Article and Find Full Text PDF
Article Synopsis
  • The fate of influenza A virus (IAV) in host cells is determined by the interplay between the cell's defense systems and the virus's strategies to evade those defenses.
  • A comprehensive analysis combining genetic screens, transcriptomics, and proteomics identified key cell mechanisms, particularly the role of autophagy regulator TBC1D5, in inhibiting IAV replication.
  • The IAV M2 protein impedes TBC1D5's function by disrupting its interaction with Rab7, allowing the virus to avoid degradation and continue its replication and spread.
View Article and Find Full Text PDF

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress.

View Article and Find Full Text PDF

A deficient interferon response to SARS-CoV-2 infection has been implicated as a determinant of severe COVID-19. To identify the molecular effectors that govern interferon control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human interferon stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors that inhibited viral entry, nucleic acid binding proteins that suppressed viral RNA synthesis, and a highly enriched cluster of ER and Golgi-resident ISGs that inhibited viral translation and egress.

View Article and Find Full Text PDF

Influenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines.

View Article and Find Full Text PDF

Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production.

View Article and Find Full Text PDF

In recent years genome-wide RNAi screens have revealed hundreds of cellular factors required for influenza virus infections in human cells. The long-term goal is to establish some of them as drug targets for the development of the next generation of antivirals against influenza. We found that several members of the polo-like kinases (PLK), a family of serine/threonine kinases with well-known roles in cell cycle regulation, were identified as hits in four different RNAi screens and we therefore studied their potential as drug target for influenza.

View Article and Find Full Text PDF

Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics.

View Article and Find Full Text PDF

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection.

View Article and Find Full Text PDF

The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner.

View Article and Find Full Text PDF

Several systems-level datasets designed to dissect host-pathogen interactions during influenza A infection have been reported. However, apparent discordance among these data has hampered their full utility toward advancing mechanistic and therapeutic knowledge. To collectively reconcile these datasets, we performed a meta-analysis of data from eight published RNAi screens and integrated these data with three protein interaction datasets, including one generated within the context of this study.

View Article and Find Full Text PDF

The viral polymerase is an essential complex for the influenza virus life cycle as it performs the viral RNA transcription and replication processes. To that end, the polymerase carries out a wide array of functions and associates to a large number of cellular proteins. Due to its importance, recent studies have found numerous mutations in all three polymerase protein subunits contributing to virus host range and pathogenicity.

View Article and Find Full Text PDF

Background: The majority of pandemic 2009 H1N1 (A(H1N1)pdm09) influenza virus (IV) caused mild symptoms in most infected patients, however, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. The purpose of this work was to study in ferrets the dynamics of infection of two contemporary strains of human A(H1N1)pdm09 IV, one isolated from a patient showing mild disease and the other one from a fatal case.

Methods: Viral strains isolated from a patient showing mild disease-M (A/CastillaLaMancha/RR5661/2009) or from a fatal case-F (A/CastillaLaMancha/RR5911/2009), both without known comorbid conditions, were inoculated in two groups of ferrets and clinical and pathological conditions were analysed.

View Article and Find Full Text PDF
Article Synopsis
  • Bioengineering of viruses and virus-like particles (VLPs) is being used to create new vaccines against pathogens, with a focus on the infectious bursal disease virus (IBDV) for enhancing protective immunity.
  • The IBDV capsid, made of VP2 proteins, was modified to allow the insertion of heterologous proteins like enhanced green fluorescent protein (EGFP), which assembled efficiently into VLPs.
  • Immunization studies in mice with these VLPs showed promising results, as the mice developed antibodies and protection against viral challenges, demonstrating the potential of VLPs as effective nonliving vaccines.
View Article and Find Full Text PDF

hCLE/C14orf166 is a nuclear and cytoplasmic protein that interacts with the RNAP II, modulates nuclear RNA metabolism and is present in cytoplasmic RNA granules involved in localized translation. Here we have studied whether hCLE shares common interactors in the nucleus and the cytosol, which could shed light on its participation in the sequential phases of RNA metabolism. Nuclear and cytoplasmic purified hCLE-associated factors were identified and proteins involved in mRNA metabolism, motor-related proteins, cytoskeletal and translation-related factors were found.

View Article and Find Full Text PDF

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies.

View Article and Find Full Text PDF