Conventional cancer therapies, including surgery, chemotherapy, and radiotherapy, have achieved considerable clinical success but remain constrained by systemic toxicity, poor selectivity, drug resistance, and tumor recurrence. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as minimally invasive alternatives; however, their clinical translation is hindered by hypoxic tumor microenvironments, limited light penetration, and intratumoral heterogeneity. Recent advances in multifunctional nanoplatforms seek to overcome these limitations by integrating PTT and PDT with chemotherapy and immunotherapy, thereby enhancing therapeutic efficacy through synergistic mechanisms.
View Article and Find Full Text PDFDendrimers represent a class of polymers characterized by a highly branched architecture, precise composition, and a multitude of functional groups, garnering significant interest in biomedical applications. These are three-dimensional nanostructures characterized by a high degree of molecular homogeneity, adjustable size, multivalence, significant surface functionality, and high aqueous solubility.Dendrimers, owing to their significant properties, are currently utilized for drug delivery and are under investigation as potential carriers for nucleic acid-based vaccines.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Photoactive complexes of first-row transition metals with emission properties offer a dual approach to cancer treatment, enabling precise optical tumor detection and subsequent eradication using light. We report a photostable and photoactive mixed-ligand Mn(II) complex, , featuring a naturally occurring curcumin ligand and dipyridophenazine base. demonstrates significant visible and red light-triggered phototoxicity against cancer cells and precise tumor imaging capability .
View Article and Find Full Text PDFPhotoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
March 2025
HER2-positive breast cancer constitutes 20 % of reported cases, characterized by excessive expression of HER2 receptors, pivotal in cell signaling and growth. Immunotherapy, the established treatment, often leads to multidrug resistance and tumor recurrence. There's a critical need for an effective strategy delaying drug resistance onset and ensuring cancer cell eradication.
View Article and Find Full Text PDFGraphene oxide (GO) and GO-based nanocomposites are promising in drug delivery and photothermal therapy due to their exceptional near-infrared optical absorption and high specific surface area. In this study, we have effectively conjugated an oxaliplatin (IV) prodrug, PEGylated graphene oxide, and PEGylated biotin (PB) in a single platform for breast cancer treatment. This platform demonstrates promising prospects for targeted drug delivery and the synergistic application of photothermal-chemotherapy when exposed to NIR-laser irradiation.
View Article and Find Full Text PDF