Hyperglycaemia harms vascular health and promotes platelet aggregation. Reducing glucose concentration is crucial, and sugar alcohols may aid this effort. Used for over 50 years in food, cosmetic, and pharmaceutical industries, erythritol and xylitol minimally affect plasma glucose and insulin levels while promoting the release of beneficial gastrointestinal hormones such as e.
View Article and Find Full Text PDFCell Rep Med
May 2025
Inducing the neogenesis of pancreatic insulin-producing β cells holds great promise for diabetes research. However, non-toxic compounds with such activities remain to be discovered. Herein, we report the identification of RSPO1, a key agonist of the Wnt/β-catenin pathway, as an inducer of β cell replication.
View Article and Find Full Text PDFPeritoneal dialysis adoption and technique survival is affected by limitations related to peritoneal membrane longevity and metabolic alterations. Indeed, almost all peritoneal dialysis fluids exploit glucose as an osmotic agent that rapidly diffuses across the peritoneal membrane, potentially resulting in metabolic abnormalities such as hyperglycemia, hyperinsulinemia, obesity, and hyperlipidemia. Moreover, glucose-degradation products generated during heat sterilization, other than glucose itself, induce significant morphological and functional changes in the peritoneum leading to ultrafiltration failure.
View Article and Find Full Text PDFKidney Blood Press Res
October 2024
Introduction: Peritoneal ultrafiltration (PUF) has been proposed as an additional therapeutic option for refractory congestive heart failure (RCHF) patients. Despite promising observational studies and/or case report results, limited clinical trial data exist, and so far, PUF solutions remain only indicated for chronic kidney diseases. In this article, we described a multicenter, randomized, controlled, unblinded, adaptive design clinical trial, about to start, investigating the effects of PolyCore™, an innovative PUF solution, in the treatment of RCHF patients.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is a home-based efficacious modality for the replacement of renal function in end-stage kidney failure patients, but it is still under-prescribed. A major limitation is the durability of the dialytic technique. Continuous exposure of the peritoneum to bioincompatible conventional glucose-based solutions is thought to be the main cause of the long-term morpho-functional peritoneal changes that eventually result in ultrafiltration failure.
View Article and Find Full Text PDFRecent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor.
View Article and Find Full Text PDFThe kidneys and heart work together to balance the body's circulation, and although their physiology is based on strict inter dependence, their performance fulfills different aims. While the heart can rapidly increase its own oxygen consumption to comply with the wide changes in metabolic demand linked to body function, the kidneys physiology are primarily designed to maintain a stable metabolic rate and have a limited capacity to cope with any steep increase in renal metabolism. In the kidneys, glomerular population filters a large amount of blood and the tubular system has been programmed to reabsorb 99% of filtrate by reabsorbing sodium together with other filtered substances, including all glucose molecules.
View Article and Find Full Text PDFHuman Carnitine Acetyl Transferase (hCAT) reversibly catalyzes the transfer of the acetyl-moiety from acetyl-CoA to L-carnitine, modulating the acetyl-CoA/CoA ratio in mitochondria. Derangement of acetyl-CoA/CoA ratio leads to metabolic alterations that could result in the onset or worsening of pathological states. Due to the importance of CAT as a pharmacological target and to the European directive for reducing animal experimentation, we have pointed out a procedure to produce a recombinant, pure, and functional hCAT using the E.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is an efficient renal replacement therapy for patients with end-stage renal disease. Even if it ensures an outcome equivalent to hemodialysis and a better quality of life, in the long-term, PD is associated with the development of peritoneal fibrosis and the consequents patient morbidity and PD technique failure. This unfavorable effect is mostly due to the bio-incompatibility of PD solution (mainly based on high glucose concentration).
View Article and Find Full Text PDFCan J Physiol Pharmacol
February 2022
Large clinical studies conducted with sodium-glucose co-transporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes and heart failure with reduced ejection fraction have demonstrated their ability to achieve both cardiac and kidney benefits. Although there is huge evidence on SGLT2i-mediated clinical benefits both in diabetic and non-diabetic patients, the pathophysiological mechanisms underlying their efficacy are still poorly understood. Some favorable mechanisms are likely due to the prompt glycosuric action which is associated with natriuretic effects leading to hemodynamic benefits as well as a reduction in glomerular hyperfiltration and renin-angiotensin-aldosterone system activation.
View Article and Find Full Text PDFWe previously showed that mesothelial cells in human peritoneum express the water channel aquaporin 1 (AQP1) at the plasma membrane, suggesting that, although in a non-physiological context, it may facilitate osmotic water exchange during peritoneal dialysis (PD). According to the three-pore model that predicts the transport of water during PD, the endothelium of peritoneal capillaries is the major limiting barrier to water transport across peritoneum, assuming the functional role of the mesothelium, as a semipermeable barrier, to be negligible. We hypothesized that an intact mesothelial layer is poorly permeable to water unless AQP1 is expressed at the plasma membrane.
View Article and Find Full Text PDFG Ital Nefrol
October 2021
Peritoneal dialysis is an efficient renal replacement therapy for uremic patients but is currently under-prescribed. This is partly due to the unfavorable effects on peritoneal morphology and function (bioincompatibility) of current glucose-based solutions. Use of standard solutions can cause several peritoneal alterations including inflammation, mesothelial to mesenchymal transition, and neo-angiogenesis.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling-and their metabolic sequelae-on the synthesis of collagen and other extracellular membrane components.
View Article and Find Full Text PDFTrends Endocrinol Metab
September 2021
Diabetic nephropathy is highly correlated with the occurrence of other complications of type 1 diabetes (T1D) and type 2 diabetes (T2D) mellitus; for example, hypertension with cardiovascular disease (CVD) being the most frequent cause of death in patients with end-stage renal disease and undergoing renal dialysis. Hyperglycemia and insulin resistance (IR) are responsible for the micro- and macrovascular complications of diabetes through different mechanisms. In particular, IR plays a key role in the etiology of atherosclerosis in both diabetic and non-diabetic patients.
View Article and Find Full Text PDFGlucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques.
View Article and Find Full Text PDFIntroduction: Blood Pressure (BP) control is largely unsatisfied in End Stage Kidney Disease (ESKD) principally due to sodium retention. Peritoneal Dialysis (PD) is the most common type of home dialysis, using a peritoneal membrane to remove sodium, though sodium removal remains challenging.
Methods: This is a case-study reporting two consecutive ESKD patients treated by a novel peritoneal PD solution with a mildly reduced sodium content (130 mmol/L) to treat hypertension.
The endothelial glycocalyx, the gel layer covering the endothelium, is composed of glycosaminoglycans, proteoglycans, and adsorbed plasma proteins. This structure modulates vessels' mechanotransduction, vascular permeability, and leukocyte adhesion. Thus, it regulates several physiological and pathological events.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is a feasible and effective renal replacement therapy (RRT) thanks to the dialytic properties of the peritoneal membrane (PM). Preservation of PM integrity and transport function is the key to the success of PD therapy, particularly in the long term, since the prolonged exposure to unphysiological hypertonic glucose-based PD solutions in current use is detrimental to the PM, with progressive loss of peritoneal ultrafiltration capacity causing technique failure. Moreover, absorbing too much glucose intraperitoneally from the dialysate may give rise to a number of systemic metabolic effects.
View Article and Find Full Text PDFThe main reason why peritoneal dialysis (PD) still has limited use in the management of patients with end-stage renal disease (ESRD) lies in the fact that the currently used glucose-based PD solutions are not completely biocompatible and determine, over time, the degeneration of the peritoneal membrane (PM) and consequent loss of ultrafiltration (UF). Here we evaluated the biocompatibility of a novel formulation of dialytic solutions, in which a substantial amount of glucose is replaced by two osmometabolic agents, xylitol and l-carnitine. The effect of this novel formulation on cell viability, the integrity of the mesothelial barrier and secretion of pro-inflammatory cytokines was evaluated on human mesothelial cells grown on cell culture inserts and exposed to the PD solution only at the apical side, mimicking the condition of a PD dwell.
View Article and Find Full Text PDFPeritoneal dialysis (PD) is a viable but under-prescribed treatment for uremic patients. Concerns about its use include the bio-incompatibility of PD fluids, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane. Many of these effects are thought to be due to the high glucose content of these solutions, with attendant issues of products generated during heat treatment of glucose-containing solutions.
View Article and Find Full Text PDFJ Mol Graph Model
November 2020
Int J Mol Sci
July 2020
Peritoneal dialysis (PD) is an established home care, cost-effective renal replacement therapy (RRT), which offers several advantages over the most used dialysis modality, hemodialysis. Despite its potential benefits, however, PD is an under-prescribed method of treating uremic patients. Infectious complications (primarily peritonitis) and bio-incompatibility of PD solutions are the main contributors to PD drop-out, due to their potential for altering the functional and anatomical integrity of the peritoneal membrane.
View Article and Find Full Text PDF