Publications by authors named "Araceli Rodriguez-Romero"

Sunscreens are included among the contaminants of emerging concern (CECs) as their production and use have spread over years while damaging aquatic biota. Sunscreens can damage the photosynthetic systems and change the microbiome of seagrasses, triggering alterations in carbon metabolism -including primary production and dissolved organic carbon (DOC) fluxes- and ecological functions. Here, we conducted a 31-day mesocosm experiment exposing Cymodocea nodosa plants to a mixture of commercial sunscreens.

View Article and Find Full Text PDF

The Balearic Islands, a top tourist destination for sunny beaches, face physical and chemical pressures from human activities, impacting keystone species like the endemic seagrass Posidonia oceanica and its associated microbiome. This study evaluated the effects of ZnO and TiO nanoparticles and three commercial sunscreens with varying protection factors (50 or 90) and chemical complexities (1- SPF50_E "eco-friendly"; 2- SPF50 not "eco-friendly"; 3- SPF90 not "eco-friendly") on five heterotrophic bacteria (Pseudomonas azotifigens, Marinobacterium litorale, Thiothrix nivea, Sedimenticola thiotaurini and Cobetia sp) and two autotrophic cyanobacteria (Halothece sp. and Fischerella muscicola) associated to P.

View Article and Find Full Text PDF

Iron plays a crucial role in the high-nutrient, low-chlorophyll Southern Ocean regions, promoting phytoplankton growth and enhancing atmospheric carbon sequestration. In this area, iron-rich Antarctic krill (Euphausia superba) and baleen whale species, which are among their main predators, play a large role in the recycling of iron. However, penguins have received limited attention despite their representing the largest seabird biomass in the southern polar region.

View Article and Find Full Text PDF

Ecotoxicological analysis of construction products is a relatively unexplored area at international level. Aquatic toxicity tests on construction products has been recommended recently for freshwater environment. However, the biological effects of alternative materials on marine ecosystem are still not considered.

View Article and Find Full Text PDF
Article Synopsis
  • Sunscreens containing ZnO can harm marine environments by releasing zinc into seawater and causing bioaccumulation in organisms like clams.
  • A mathematical model was developed to analyze the bioaccumulation of zinc in the clams, using different concentrations of sunscreen in experiments without and with clams.
  • The findings showed that lower concentrations of sunscreen led to slower uptake rates of zinc in clams, while higher concentrations increased the rate of zinc release back into the seawater, indicating a complex interaction between zinc, sunscreen, and marine life.
View Article and Find Full Text PDF

Surgical face masks are more present than ever as personal protective equipment due to the COVID-19 pandemic. In this work, we show that the contents of regular surgical masks: i) polypropylene microfibres and ii) some added metals such as: Al, Fe, Cu, Mn, Zn and Ba, may be toxic to some marine life. This work has got two objectives: i) to study the release rate of the products from face masks in marine water and ii) to assess the toxicity in Phaeodactylum tricornutum of these by-products.

View Article and Find Full Text PDF

Penguins dominate the Antarctic avifauna. As key animals in the Antarctic ecosystem, they are monitored to evaluate the ecological status of this pristine and remote region and specifically, they have been used as effective bioindicators suitable for long-term monitoring of metals in the Antarctic environment. However, studies about the role of this emblematic organism could play in the recycling of trace metals (TMs) in the Antarctic ecosystem are very limited.

View Article and Find Full Text PDF

This study quantifies the degree of pollution and assess the ecological risk of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn in sediments and soils of the Limoncocha Biological Reserve (Ecuador), identified as a Ramsar site with high ecological and socioeconomic value. The hydrologic system of the Reserve is mainly formed by two rivers that drain into the Limoncocha lagoon, which occupies only five percent of the protected area but support a high anthropic influence. Local statistical baseline of studied potentially toxic elements is established using cumulative frequency method, and Al is selected as reference element due to the good correlation with the studied elements.

View Article and Find Full Text PDF

Sunscreen is released into the marine environment and is considered toxic for marine life. The current analytical methods for the quantification of sunscreen are mostly specific to individual chemical ingredients and based on complex analytical and instrumental techniques. A simple, selective, rapid, reproducible and low-cost spectrophotometric procedure for the quantification of commercial sunscreen in seawater is described here.

View Article and Find Full Text PDF

Microplastic particles (MP) uptake by marine organisms is a phenomenon of global concern. Nevertheless, there is scarce evidence about the impacts of MP on the energy balance of marine invertebrates. We evaluated the mid-term effect of the microplastic ingestion at the current higher environmental concentrations in the ocean on the energy balance of the giant mussel Choromytilus chorus.

View Article and Find Full Text PDF

Tens of thousands of anthropogenic chemicals and wastes enter the marine environment each year as a consequence of the ever-increasing anthropogenic activities and demographic growth of the human population, which is majorly concentrated along coastal areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of chemicals in the environment, and improving our understanding of how they can affect natural ecosystems. However, chemical contamination is not occurring in isolation, but rather against a rapidly changing environmental horizon.

View Article and Find Full Text PDF

Contamination by sunscreens has become a serious environmental problem due to the increasing use of these products in coastal regions. Their complex chemical composition supposes an input of different chemical compounds capable of producing toxic effects and repelling organisms. The aim of the current study was to experimentally check the repellency of three commercial sunscreens [A (lotion), B (gel) and C (milk spray)] by assessing the escape (displacement towards areas with lower sunscreen levels) of the estuarine shrimp Palaemon varians exposed (4 h) to a gradient (0-300 mg/L) of the sunscreens in a heterogeneous non-forced exposure scenario.

View Article and Find Full Text PDF

Studies detailing the environmental impact of sunscreen products on coastal ecosystems are considered a high priority. In the present study, we have determined the release rate of dissolved trace metals (Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and inorganic nutrients (SiO, P-PO, and N-NO) from a commercial sunscreen in seawater, and the role of UV radiation in the mobilization of these compounds. Our results indicate that release rates are higher under UV light conditions for all compounds and trace metals except Pb.

View Article and Find Full Text PDF

The Mediterranean region is, by far, the leading tourism destination in the world, receiving more than 330 million tourists in 2016. This tourism is undertaken mostly for seaside holidays, and during the summer season concentrates between 46% and 69% of the total international arrivals; this is equivalent to a density of 2.9 tourists per meter of Mediterranean coast, or double this number taking into account the local/permanent population in addition.

View Article and Find Full Text PDF

Little is known of the capacity that marine metazoans have to evolve under rapid CO changes. Consequently, we reared a marine polychaete, , previously cultured for approximately 33 generations under a low/variable pH regime, under elevated and low CO for six generations. The strain used was found to be tolerant to elevated CO conditions.

View Article and Find Full Text PDF

The capture and storage of CO2 in sub-seabed geological formations has been proposed as one of the potential options to decrease atmospheric CO2 concentrations in order to mitigate the abrupt and irreversible consequences of climate change. However, it is possible that CO2 leakages could occur during the injection and sequestration procedure, with significant repercussions for the marine environment. We investigate the effects of acidification derived from possible CO2 leakage events on the European green crab, Carcinus maenas.

View Article and Find Full Text PDF

The potential impact of dredged sediment has been assessed at sixteen areas of the high-traffic port of Vilagarcia (Northwest Spanish Atlantic coast). The assessment has been done by three weight-of-evidence tools, which integrated data on sediment characteristics and toxicity responses of Ampelisca brevicornis, Vibrio fischeri and eggs and embryos of Paracentrotus lividus. Two of the tools also represented management options regarding the disposal of dredged material.

View Article and Find Full Text PDF

The effects of the acidification associated with CO2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO2-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO2-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.

View Article and Find Full Text PDF

The urgent need to minimize the potential harm deriving from global climate change and ocean acidification has led governmental decision-makers and scientists to explore and study new strategies for reducing the levels of anthropogenic CO2. One of the mitigation measures proposed for reducing the concentration of atmospheric CO2 is the capture and storage of this gas in subseabed geological formations; this proposal is generating considerable international interest. The main risk associated with this option is the leakage of retained CO2, which could cause serious environmental perturbations, particularly acidification, in marine ecosystems.

View Article and Find Full Text PDF

To assess the potential effects on metal mobilization due to leakages of CO2 during its injection and storage in marine systems, an experimental set-up was devised and operated, using the polychaete Hediste diversicolor as the model organism. The objective was to study the effects of such leakage in the expected scenarios of pH values between 8.0 and 6.

View Article and Find Full Text PDF

Carbon dioxide capture and storage (CCS) in submarine geological formations has been proposed as a mitigation measure for the prevention of global warming. However, leakage of CO2 to overlying sediments may occur over time, leading to various effects on ecosystems. Laboratory-scale experiments were performed, involving direct release of carbon dioxide into sediment, inside non-pressurized chambers, in order to provide data on the possible effects of CO2 leakage from geological storage sites on the fate of several metals.

View Article and Find Full Text PDF