Brain Behav Immun Health
December 2024
Chagas' disease is a life-threatening condition caused by . Patients with chronic disease may develop gastrointestinal, neurological, or associated neuro-digestive dysfunctions. CNS invasion by can occur in the acute phase, and its presence in the brain and cerebrospinal fluid was reported.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
The aim of the study was to evaluate the effect of metabolic syndrome (MetS) on female Swiss mice subjected to severe polymicrobial sepsis induced by cecal ligation and puncture (CLP). MetS was induced in neonatal Swiss mice by subcutaneous injection of monosodium glutamate (MSG) at 4 mg/g body weight from day 1 to day 5 after birth, while animals in the control group (CTL) were treated with equimolar saline solution at the same volume and period. On the 75th day of life, the CLP model was used to induce severe polymicrobial sepsis.
View Article and Find Full Text PDFInt Immunopharmacol
September 2024
Background: Sepsis is a complex condition characterized by systemic host inflammation caused by an infection. Experimental and observational studies indicate that obesity, one of the components of metabolic syndrome (MetS), or aspirin (ASA) treatment could be associated with sepsis survival. However, the effects of ASA on septic mice with MetS-induced conditions have not been explored.
View Article and Find Full Text PDFChagas disease (CD), caused by , is a neglected tropical disease prevalent in Latin America. Infected patients are treated to eliminate the parasite, reduce the cardiomyopathy risk, and interrupt the disease transmission cycle. The World Health Organization recognizes benznidazole (BZ) and nifurtimox as effective drugs for CD treatment.
View Article and Find Full Text PDFTrypomastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease, shed extracellular vesicles (EVs) that promote the susceptibility of host cells to infection. During T. cruzi infection, the immune response of the host is important for controlling parasitism, which is necessary for survival.
View Article and Find Full Text PDFAims: Sepsis is a potentially fatal systemic inflammatory response and its underlying pathophysiology is still poorly understood. Studies suggest that obesity, a component of metabolic syndrome (MS), is associated with sepsis survival. Therefore, this study focused on investigating the influence of MS on mortality and cardiovascular dysfunction induced by sublethal cecal ligation and puncture (SL-CLP).
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2020
Chagas disease, caused by the protozoan , is one of the main causes of death due to cardiomyopathy and heart failure in Latin American countries. The treatment of Chagas disease is directed at eliminating the parasite, decreasing the probability of cardiomyopathy and disrupting the disease transmission cycle. Benznidazole (BZ) and nifurtimox (Nfx) are recognized as effective drugs for the treatment of Chagas disease by the World Health Organization, but both have high toxicity and limited efficacy, especially in the chronic disease phase.
View Article and Find Full Text PDFSci Rep
December 2019
We evaluated the influence of metabolic syndrome (MS) on acute Trypanosoma cruzi infection. Obese Swiss mice, 70 days of age, were subjected to intraperitoneal infection with 5 × 10 trypomastigotes of the Y strain. Cardiovascular, oxidative, inflammatory, and metabolic parameters were evaluated in infected and non-infected mice.
View Article and Find Full Text PDFDuring the onset of infection, an effective immune response is necessary to control parasite replication and ensure host survival. Macrophages have a central role in innate immunity, acting as an important trypanocidal cell and triggering the adaptive immune response through antigen presentation and cytokine production. However, displays immune evasion mechanisms that allow infection and replication in macrophages, favoring its chronic persistence.
View Article and Find Full Text PDFCell invasion by Trypanosoma cruzi and its intracellular replication are essential for progression of the parasite life cycle and development of Chagas disease. Prostaglandin E2 (PGE) and other eicosanoids potently modulate host response and contribute to Chagas disease progression. In this study, we evaluated the effect of aspirin (ASA), a non-selective cyclooxygenase (COX) inhibitor on the T.
View Article and Find Full Text PDFLong-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) are known to modulate a variety of immune cell functions. On occasion, this has led to diminished host resistance to certain viral and bacterial infections. Little is known about the impact of n-3 PUFA on host resistance to parasitic infection, however, based on results from a small study conducted more than two decades ago, we hypothesized that providing mice LC n-3 PUFA will diminish host resistance to Trypanosoma cruzi, the parasitic pathogen responsible for Chagas disease.
View Article and Find Full Text PDFChem Biol Interact
February 2015
Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected with this disease worldwide. T.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2014
Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T.
View Article and Find Full Text PDFFEMS Immunol Med Microbiol
April 2012
Trypanosoma cruzi, the causative agent of Chagas' disease (CD), is a substantial public health concern in Latin America. Laboratory mice inoculated with T. cruzi have served as important animal models of acute CD.
View Article and Find Full Text PDFChagas' disease is accompanied by severe anemia and oxidative stress, which may contribute to mortality. In this study, we investigated the role of 5-lipoxygenase (5-LO) in the control of parasitism and anemia associated with oxidative damage of erythrocytes in experimental Trypanosoma cruzi infection. Wild-type C57BL/6, 129Sv mice treated or not with nordihydroguaiaretic acid (NDGA, 5-LO inhibitor), mice lacking the 5-LO enzyme gene (5-LO(-/-)) and inducible nitric oxide synthase gene (iNOS(-/-)) were infected with the Y strain of T.
View Article and Find Full Text PDFProstaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas' disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T.
View Article and Find Full Text PDFTrypanosoma cruzi infection in mice is associated with severe hematological changes, including anemia, which may contribute to mortality. TNF-alpha and nitric oxide (NO) play a critical role in establishing host resistance to this pathogen. We hypothesized that phagocyte-derived NO damages erythrocytes and contributes to the anemia observed during T.
View Article and Find Full Text PDF