Publications by authors named "Antonin Marek"

Pulsed dynamic nuclear polarization (DNP) can enhance NMR signals by more than 2 orders of magnitude and is applicable to spin systems with short-lived electronic polarization. Recently, several pulsed DNP sequences were demonstrated at low magnetic fields. However, pulsed DNP at magnetic fields of modern NMR spectrometers (7 T and above) necessitates addressing major technical challenges for generating sufficiently high mm-wave amplitudes to match the nuclear Larmor frequencies.

View Article and Find Full Text PDF

One of the most essential prerequisites for the development of pulse Dynamic Nuclear Polarization (DNP) is the ability to generate high-power coherent mm-wave pulses at the electron precession frequencies corresponding to the magnetic fields of modern high-resolution NMR spectrometers. As a major step towards achieving this goal, an Extended Interaction Klystron (EIK) pulse amplifier custom-built by the Communications and Power Industries, Inc. and producing up to 140 W at 197.

View Article and Find Full Text PDF

Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency.

View Article and Find Full Text PDF

A novel Dynamic Nuclear Polarization (DNP) NMR polarizing agent ToSMTSL-PTE representing a phospholipid with a biradical TOTAPOL tethered to the polar head group has been synthesized, characterized, and employed to enhance solid-state Nuclear Magnetic Resonance (SSNMR) signal of a lipid-reconstituted integral membrane protein proteorhodopsin (PR). A matrix-free PR formulation for DNP improved the absolute sensitivity of NMR signal by a factor of ca. 4 compared to a conventional preparation with TOTAPOL dispersed in a glassy glycerol/water matrix.

View Article and Find Full Text PDF

Over the past decades pulsed electron-electron double resonance (PELDOR), often called double electron-electron resonance (DEER), became one of the major spectroscopic tools for measurements of nanometer-scale distances and distance distributions in non-crystalline biological and chemical systems. The method is based on detecting the amplitude of the primary (3-pulse DEER) or refocused (4-pulse DEER) spin echo for the so-called "observer" spins when the other spins coupled to the former by a dipolar interaction are flipped by a "pump" pulse at another EPR frequency. While the timing of the pump pulse is varied in steps, the positions of the observer pulses are typically fixed.

View Article and Find Full Text PDF

The most critical condition for performing Dynamic Nuclear Polarization (DNP) NMR experiments is achieving sufficiently high electronic B fields over the sample at the matched EPR frequencies, which for modern high-resolution NMR instruments fall into the millimeter wave (mmW) range. Typically, mmWs are generated by powerful gyrotrons and/or extended interaction klystrons (EIKs) sources and then focused onto the sample by dielectric lenses. However, further development of DNP methods including new DNP pulse sequences may require B fields higher than one could achieve with the current mmW technology.

View Article and Find Full Text PDF

This article reports a comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively (hydroxylated) or negatively (carboxylated) charged nanodiamonds (ND). Immersion in -ND suspensions resulted in a decrease in the macroscopic friction coefficients to values in the range 0.05-0.

View Article and Find Full Text PDF

Known since the ancient times, cotton continues to be one of the essential materials for the human civilization. Cotton fibers are almost pure cellulose and contain both crystalline and amorphous nanodomains with different physicochemical properties. While understanding of interactions between the individual cellulose chains within the crystalline phase is important from a perspective of mechanical properties, studies of the amorphous phase lead to characterization of the essential transport parameters, such as solvent diffusion, dyeing, drug release, and toxin absorption, as well as more complex processes of enzymatic degradation.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca.

View Article and Find Full Text PDF

Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80 nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly (15)N-labeled Pf1 coat protein in native-like bilayers. The Pf1 helix tilt angles in bilayers composed of two different lipids are not entirely governed by the membrane thickness but could be rationalized by hydrophobic interactions of lysines at the bilayer interface. The anodic aluminum oxide alignment method is applicable to a broader repertoire of lipids versus bicelle bilayer mimetics currently employed in solid-state nuclear magnetic resonance of oriented samples, thus allowing for elucidation of the role played by lipids in shaping membrane proteins.

View Article and Find Full Text PDF

We have engineered apolipoprotein A-I (apoA-I), a major protein constituent of high-density lipoprotein (HDL), to contain DOTA-chelated Gd(III) as an MRI contrast agent for the purpose of imaging reconstituted HDL (rHDL) biodistribution, metabolism and regulation in vivo. This protein contrast agent was obtained by attaching the thiol-reactive Gd[MTS-ADO3A] label at Cys residues replaced at four distinct positions (52, 55, 76 and 80) in apoA-I. MRI of infused mice previously showed that the Gd-labeled apoA-I migrates to both the liver and the kidney, the organs responsible for HDL catabolism; however, the contrast properties of apoA-I are superior when the ADO3A moiety is located at position 55, compared with the protein labeled at positions 52, 76 or 80.

View Article and Find Full Text PDF

Ultra-high molecular weight polyethylene (UHMWPE) was irradiated with accelerated electrons (1 MeV in air) using high dose rates (> 25 kGy/min) and thin specimens (thickness 1 mm). Parts of the specimens were remelted (200 degrees C for 10 min; 150 degrees C for 0, 2, 10, 30, 60 min). All specimens were stored in nitrogen in the dark at 5 degrees C.

View Article and Find Full Text PDF