Publications by authors named "Anshul Kalra"

We show how to efficiently calculate the signal in optical coherence tomography (OCT) systems due to the ballistic photons, the quasi-ballistic photons, and the photons that undergo multiple diffusive scattering using Monte Carlo simulations with importance sampling. This method enables the calculation of these three components of the OCT signal with less than one hundredth of the computational time required by the conventional Monte Carlo method. Therefore, it can be used as a design tool to characterize the performance of OCT systems, and can also be used in the development of novel signal processing techniques that can extend the imaging range of OCT systems.

View Article and Find Full Text PDF

We developed an importance sampling based method that significantly speeds up the calculation of the diffusive reflectance due to ballistic and to quasi-ballistic components of photons scattered in turbid media: Class I diffusive reflectance. These components of scattered photons make up the signal in optical coherence tomography (OCT) imaging. We show that the use of this method reduces the computation time of this diffusive reflectance in time-domain OCT by up to three orders of magnitude when compared with standard Monte Carlo simulation.

View Article and Find Full Text PDF