Publications by authors named "Anna Gliszczynska"

Colon cancer is currently the leading cause of cancer death in men and the second in women under 50. Standard therapy includes surgical resection and - in the case of non-resectable CRC -radiotherapy, chemotherapy and immunotherapy. One of the therapeutic approaches is also a combinational regimen.

View Article and Find Full Text PDF

Purpose: In our work, we focused on the development of nanostructured lipid carriers (NLCs) loaded with dexibuprofen (DXI) and their application for cancer therapy by proposing the binding of phospholipids with this non-steroidal anti-inflammatory drug (NSAID) to obtain new delivery systems.

Methods: We successfully synthesized seven conjugates with good yields, four of which are new, and have not been previously published in the literature. The structures of the obtained conjugates were confirmed and comparative in vitro studies of their antiproliferative activity were conducted, along with molecular modeling to assess their therapeutic potential.

View Article and Find Full Text PDF

This study investigated efficient extraction methods for cannabinoids and terpenes from the above-ground parts of Futura 75, focusing on two techniques: pressurized extraction and magnetic stirrer-assisted extraction. The effects of solvent type, temperature, time, and pressure were evaluated using five organic solvents and two binary solvent systems. Cannabinoid profiles of obtained extracts were analyzed using gas chromatography coupled with mass spectrometry (GC-MS), while terpene profiles were characterized through solid-phase microextraction (SPME) combined with GC-MS.

View Article and Find Full Text PDF

Ocular inflammation is a complex pathology with limited treatment options. While traditional therapies have side effects, novel approaches, such as natural compounds like Apigenin (APG) and Melatonin (MEL) offer promising solutions. APG and MEL, in combination with nanostructured lipid carriers (NLC), may provide a synergistic effect in treating ocular inflammation, potentially improving patient outcomes and reducing adverse effects.

View Article and Find Full Text PDF

Purpose: It is well known that the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (IND) exhibits significant anticancer potential reported not only by in vitro and in vivo studies, but also in clinical trials. Despite promising results, IND is not widely used as an adjunctive agent in cancer therapy due to the occurrence of several gastrointestinal side effects, primarily after oral administration. Therefore, this study aimed to develop a nanosystem with reduced toxicity and risk of side effects for the delivery of IND for cancer treatment.

View Article and Find Full Text PDF

Background: Insulin resistance is a condition characterized by a reduced biological response to insulin. It is one of the most common metabolic diseases in modern civilization. Numerous natural substances have a positive effect on metabolism and energy homeostasis including restoring the proper sensitivity to insulin.

View Article and Find Full Text PDF

Cancer constitutes the second leading cause of death worldwide, with conventional therapies limited by significant side effects. Melatonin (MEL), a natural compound with antitumoral properties, suffers from instability and low solubility. To overcome these issues, MEL was encapsulated into nanostructured lipid carriers (MEL-NLC) containing rosehip oil to enhance stability and boost its antitumoral activity.

View Article and Find Full Text PDF

Purpose: The anticancer potential of indomethacin and other nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro, in vivo, and in clinical trials is well known and widely reported in the literature, along with their side effects, which are mainly observed in the gastrointestinal tract. Here, we present a strategy for the application of the old drug indomethacin as an anticancer agent by encapsulating it in nanostructured lipid carriers (NLC). We describe the production method of IND-NLC, their physicochemical parameters, and the results of their antiproliferative activity against selected cancer cell lines, which were found to be higher compared to the activity of free indomethacin.

View Article and Find Full Text PDF
Article Synopsis
  • LPCs, particularly those with palmitoleic acid, show promise as agonists for GPCRs, which are significant in regulating diabetes and obesity.
  • Recent findings indicate that palmitoleic acid activates insulin secretion through different GPCR signaling pathways.
  • The study involves synthesizing LPCs with palmitoleic acid isomers and examining their effects on pancreatic β cell viability and GPCR activation, supplemented by molecular modeling for potential binding sites.
View Article and Find Full Text PDF

Purpose: Cancer is one of the major causes of death worldwide affecting more than 19 million people. Traditional cancer therapies have many adverse effects and often result in unsatisfactory outcomes. Natural flavones, such as apigenin (APG), have demonstrated excellent antitumoral properties.

View Article and Find Full Text PDF

Oxidation of lipids and lipoproteins contributes to inflammation processes that promote the development of eye diseases. This is a consequence of metabolism dysregulation; for instance, that of the dysfunctional peroxisomal lipid metabolism. Dysfunction of lipid peroxidation is a critical factor in oxidative stress that causes ROS-induced cell damage.

View Article and Find Full Text PDF

Resveratrol (RES) is gaining recognition as a natural bioactive compound. To expand the possible applications of RES with its enhanced bioactivity as well as to increase the health benefits of long-chain fatty acids, a lipophilization process of RES was performed using three fatty acids: palmitic acid (PA), oleic acid (OA), and conjugated linoleic acid (CLA). The obtained mono-, di-, and tri-esters of RES were evaluated for their anticancer and antioxidant properties against lung carcinoma (A549), colorectal adenocarcinoma (HT29), and pancreatic ductal adenocarcinoma (BxPC3) cell lines.

View Article and Find Full Text PDF

Cancer is identified as one of the main causes of death worldwide, and an effective treatment that can reduce/eliminate serious adverse effects is still an unmet medical need. Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has demonstrated promising antitumoral properties. However, the prolonged use of this NSAID poses several adverse effects.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) express anti-tumoral activity mainly by blocking cyclooxygenase-2 involved in the synthesis of prostaglandins. Therefore, in the last few decades, many have attempted to explore the possibilities of applying this group of drugs as effective agents for the inhibition of neoplastic processes. This review summarizes the evidence presented in the literature regarding the anti-tumoral actions of NSAIDs used as monotherapies as well as in combination with conventional chemotherapeutics and natural products.

View Article and Find Full Text PDF

Geranylacetone and nerylacetone are natural sesquiterpenoids, which play various roles in plant-insect interactions, including the deterrent and repellent effects on herbivores. The structural modifications of natural compounds often change their biological activities. The aim of the study was to evaluate the effect of geranylacetone, nerylacetone and their epoxy-derivatives on the probing and settling behavior of (Sulz.

View Article and Find Full Text PDF

The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 2 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured.

View Article and Find Full Text PDF

Phospholipids (PLs) are a class of lipids with many proven biological functions. They are commonly used in lipid replacement therapy to enrich cell membranes damaged in chronic neurodegenerative diseases, cancer, or aging processes. Due to their amphipathic nature, PLs have been widely used in food, cosmetic, and pharmaceutical products as natural emulsifiers and components of liposomes.

View Article and Find Full Text PDF

Enzymatic acidolysis of egg-yolk phosphatidylcholine (PC) with 3-methoxycinnamic acid (3-OMe-CA) was investigated to produce biologically active 3-methoxycinnamoylated phospholipids. Four commercially available lipases were screened for their ability to incorporate 3-OMe-CA into PC. The results showed that Novozym 435 is the most effective biocatalyst for this process, while during the examination of organic solvents, heptane was found propriate reaction medium.

View Article and Find Full Text PDF

The aim of this work was the evaluation of the physico-chemical properties of a new type of liposomes that are composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine. In particular, the impact of modified anisic acid phospholipids on the thermotropic parameters of liposomes was determined, which is crucial for using them as potential carriers of active substances in cancer therapies. Their properties were determined using three biophysical methods, namely differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is a condition in which the physiological amount of insulin is insufficient to evoke a proper response of the cell, that is, glucose utilization. Metformin is the first choice for therapy, thanks to its glycemic efficacy and general tolerability. In addition, various natural compounds from plant extracts, spices, and essential oils have been shown to provide health benefits regarding insulin sensitivity.

View Article and Find Full Text PDF

Phenolic acids possess many beneficial biological activities, including antioxidant and anti-inflammatory properties. Unfortunately, their low bioavailability restricts their potential medical uses, as it limits the concentration of phenolic acids achievable in the organism. The conjugation with phospholipids constitutes one of the most effective strategies to enhance compounds bioavailability in biological systems.

View Article and Find Full Text PDF

Methoxylated derivatives of cinnamic acid play an important role in the formation of the pro-health potential of food products. Numerous reports present them as molecules with strong antimicrobial, antidiabetic, anticancer as well as hepato-, cardio-, and neuroprotective activities. In the last three decades, many research groups have tried to extend the practical application of these molecules as therapeutic and antioxidant agents extensively studying the methods of their lipophilization as the solution of problems of their low oral bioavailability and rapid metabolism.

View Article and Find Full Text PDF

The -methoxycinnamic acid (-MCA) is one of the most studied phenylpropanoids with high importance not only in the wide spectrum of therapeutic activities but also its potential application for the food industry. This natural compound derived from plants exhibits a wide range of biologically useful properties; therefore, during the last two decades it has been extensively tested for therapeutic and nutraceutical applications. This article presents the natural sources of -MCA, its metabolism, pharmacokinetic properties, and safety of its application.

View Article and Find Full Text PDF

Insulin plays a significant role in carbohydrate homeostasis as the blood glucose lowering hormone. Glucose-induced insulin secretion (GSIS) is augmented by glucagon-like peptide (GLP-1), a gastrointestinal peptide released in response to ingesting nutriments. The secretion of insulin and GLP-1 is mediated by the binding of nutrients to G protein-coupled receptors (GPCRs) expressed by pancreatic β-cells and enteroendocrine cells, respectively.

View Article and Find Full Text PDF

Indomethacin (IND) is a drug which after successful clinical trials became available for general prescription in 1965 and from that time is one of the most widely used anti-inflammatory drug with the highest potencies in the in vitro and in vivo models. However, despite its high therapeutic efficacy in relieving the symptoms of certain arthritis and in treating gout or collagen diseases, administration of IND causes a number of adverse effects, such as gastrointestinal ulceration, frequent central nervous system disorders and renal toxicity. These obstacles significantly limit the practical applications of IND and make that 10-20% of patients discontinue its use.

View Article and Find Full Text PDF