Publications by authors named "Anna Danese"

For genome editing, the use of CRISPR ribonucleoprotein (RNP) complexes is well established and often the superior choice over plasmid-based or viral strategies. RNPs containing dCas9 fusion proteins, which enable the targeted manipulation of transcriptomes and epigenomes, remain significantly less accessible. Here, we describe the production, delivery, and optimization of second generation CRISPRa RNPs (dRNPs).

View Article and Find Full Text PDF

Gene expression is a multi-step process that converts DNA-encoded information into proteins, involving RNA transcription, maturation, degradation, and translation. While transcriptional control is a major regulator of protein levels, the role of post-transcriptional processes such as RNA processing and degradation is less well understood due to the challenge of measuring their contributions individually. To address this challenge, we investigated the control of gene expression in Trypanosoma brucei, a unicellular parasite assumed to lack transcriptional control.

View Article and Find Full Text PDF

Direct neuronal reprogramming is a promising approach to regenerate neurons from local glial cells. However, mechanisms of epigenome remodeling and co-factors facilitating this process are unclear. In this study, we combined single-cell multiomics with genome-wide profiling of three-dimensional nuclear architecture and DNA methylation in mouse astrocyte-to-neuron reprogramming mediated by Neurogenin2 (Ngn2) and its phosphorylation-resistant form (PmutNgn2), respectively.

View Article and Find Full Text PDF

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors.

View Article and Find Full Text PDF

Activating colony-stimulating factor-3 receptor gene () mutations are recurrent in acute myeloid leukemia (AML) with t(8;21) translocation. However, the nature of oncogenic collaboration between alterations of and the t(8;21) associated fusion remains unclear. In CD34+ hematopoietic stem and progenitor cells from healthy donors, double oncogene expression led to a clonal advantage, increased self-renewal potential, and blast-like morphology and distinct immunophenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Single-cell genomics enables the identification of cell types based on their molecular profiles, especially helping to find novel and rare cell types through RNA sequencing.
  • The new tool CIARA (Cluster Independent Algorithm for the identification of markers of RAre cell types) is designed to identify genes that could serve as markers for these rare cell types, addressing a limitation of traditional clustering methods.
  • CIARA has proven to outperform existing techniques for detecting rare cell types and can be applied to various single-cell data types, with user-friendly implementations available in R and Python.
View Article and Find Full Text PDF

EpiScanpy is a toolkit for the analysis of single-cell epigenomic data, namely single-cell DNA methylation and single-cell ATAC-seq data. To address the modality specific challenges from epigenomics data, epiScanpy quantifies the epigenome using multiple feature space constructions and builds a nearest neighbour graph using epigenomic distance between cells. EpiScanpy makes the many existing scRNA-seq workflows from scanpy available to large-scale single-cell data from other -omics modalities, including methods for common clustering, dimension reduction, cell type identification and trajectory learning techniques, as well as an atlas integration tool for scATAC-seq datasets.

View Article and Find Full Text PDF