Publications by authors named "Ankit Dahal"

Chronic inflammatory milieu in the tumor microenvironment (TME) leads to the recruitment and differentiation of myeloid-derived suppressor cells (MDSCs). Polymorphonuclear (PMN)-MDSCs, which are phenotypically and morphologically defined as a subset of neutrophils, cause major immune suppression in the TME, posing a significant challenge in the development of effective immunotherapies. Despite recent advances in our understanding of PMN-MDSC functions, the mechanism that gives rise to immunosuppressive neutrophils within the TME remains elusive.

View Article and Find Full Text PDF

The adaptive immune response is reliant on a T cell's ability to migrate through blood, lymph, and tissue in response to pathogens and foreign bodies. T cell migration is a complex process that requires the coordination of many signal inputs from the environment and local immune cells, including chemokines, chemokine receptors, and adhesion molecules. Furthermore, T cell motility is influenced by dynamic surrounding environmental cues, which can alter activation state, transcriptional landscape, adhesion molecule expression, and more.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising treatment option for several hematologic cancers. However, efforts to achieve the same level of therapeutic success in solid tumors have largely failed mainly due to CAR-T cell exhaustion and poor persistence at the tumor site. Although immunosuppression mediated by augmented programmed cell death protein-1 (PD-1) expression has been proposed to cause CAR-T cell hypofunction and limited clinical efficacy, little is known about the underlying mechanisms and immunological consequences of PD-1 expression on CAR-T cells.

View Article and Find Full Text PDF

Keratinocytes undergo significant structural remodeling during epidermal differentiation, including a broad transformation of the proteome coupled with a reduction in total cellular biomass. This suggests that intracellular digestion of proteins and organelles is necessary for keratinocyte differentiation. Here, we use both genetic and pharmacologic approaches to demonstrate that autophagy and lysosomal functions are required for keratinocyte differentiation in organotypic human skin.

View Article and Find Full Text PDF

Female sex and history of prior pregnancies are associated with favorable melanoma outcomes. Here, we show that much of the melanoma protective effect likely results from estrogen signaling through the G protein-coupled estrogen receptor (GPER) on melanocytes. Selective GPER activation in primary melanocytes and melanoma cells induced long-term changes that maintained a more differentiated cell state as defined by increased expression of well-established melanocyte differentiation antigens, increased pigment production, decreased proliferative capacity, and decreased expression of the oncodriver and stem cell marker c-Myc.

View Article and Find Full Text PDF

Proliferation and migration of epidermal keratinocytes are essential for proper cutaneous wound closure after injury. αv integrins and several of their ligands-vitronectin, TGFβ and thrombospondin-are up-regulated in healing wounds. However, the role of αv integrins in wound re-epithelialization is unknown.

View Article and Find Full Text PDF

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR).

View Article and Find Full Text PDF

Integrins play crucial roles in epithelial adhesion, proliferation, wound healing and cancer. In the epidermis, the roles of many integrin subunits are incompletely defined and mechanistic details regarding their functions are lacking. We performed a multiplexed small hairpin (sh)RNA screen to define roles for each subunit in human organotypic skin.

View Article and Find Full Text PDF