Background: There is a scarcity of artificial intelligence models trained on frozen pathology. One way to expand the clinical utility of models trained on permanent pathology is by applying them to frozen sections and fine-tune based on weaknesses.
Objective: To qualitatively evaluate a deep learning model trained on permanent pathology to classify squamous cell carcinoma on Mohs surgery frozen sections to learn model shortcomings and inform retraining and fine-tuning.
Primary cutaneous squamous cell carcinoma (cSCC) is responsible for ~10,000 deaths annually in the United States. Stratification of risk of poor outcome at initial biopsy would significantly impact clinical decision-making during the initial post operative period where intervention has been shown to be most effective. Using whole-slide images (WSI) from 163 patients from 3 institutions, we developed a self supervised deep-learning model to predict poor outcomes in cSCC patients from histopathological features at initial diagnosis, and validated it using WSI from 563 patients, collected from two other academic institutions.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
September 2024
Background: Learning policies for decision-making, such as recommending treatments in clinical settings, is important for enhancing clinical decision-support systems. However, the challenge lies in accurately evaluating and optimizing these policies for maximum efficacy. This paper addresses this gap by focusing on two key aspects of policy learning: evaluation and optimization.
View Article and Find Full Text PDFYearb Med Inform
August 2020
Introduction: There has been a rapid development of deep learning (DL) models for medical imaging. However, DL requires a large labeled dataset for training the models. Getting large-scale labeled data remains a challenge, and multi-center datasets suffer from heterogeneity due to patient diversity and varying imaging protocols.
View Article and Find Full Text PDFACM BCB
September 2019
Stain normalization is a crucial pre-processing step for histopathological image processing, and can help improve the accuracy of downstream tasks such as segmentation and classification. To evaluate the effectiveness of stain normalization methods, various metrics based on color-perceptual similarity and stain color evaluation have been proposed. However, there still exists a huge gap between metric evaluation and human perception, given the limited explainability power of existing metrics and inability to combine color and semantic information efficiently.
View Article and Find Full Text PDFIn the field of quantitative microscopy, textural information plays a significant role very often in tissue characterization and diagnosis, in addition to morphology and intensity. The aim of this work is to improve the classification accuracy based on textural features for the development of a computer assisted screening of oral sub-mucous fibrosis (OSF). In fact, a systematic approach is introduced in order to grade the histopathological tissue sections into normal, OSF without dysplasia and OSF with dysplasia, which would help the oral onco-pathologists to screen the subjects rapidly.
View Article and Find Full Text PDFThe objective of this paper is to provide a texture based segmentation algorithm for better delineation of the epithelial layer from histological images in discriminating normal and oral sub-mucous fibrosis (OSF). As per literature and oral clinicians, it is established that the OSF initially originates and propagates in the epithelial layer. So, more accurate segmentation of this layer is extremely important for a clinician to make a diagnostic decision.
View Article and Find Full Text PDF