Publications by authors named "Angela Di Porzio"

The objective of the study was to evaluate the efficacy of S. clausii spores (SF174) in counteracting the deleterious effects of dietary fructose. Thirty-days old male Wistar rats were treated for 6 weeks: control group: 0.

View Article and Find Full Text PDF

Western dietary pattern is one of the main contributors to the increased risk of obesity and chronic diseases, through oxidative stress and inflammation, that are the two key mechanisms targeting metabolic organs, such as skeletal muscle and adipose tissue. The chronic exposure to high levels of dietary fatty acids can increase the amount of intramyocellular lipids in skeletal muscle, altering glucose homeostasis and contributing to a reduction in mitochondrial oxidative capacity. Probiotic administration is a promising approach as preventive strategy to attenuate metabolic damage induced by Western diet.

View Article and Find Full Text PDF

The oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174.

View Article and Find Full Text PDF

The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis.

View Article and Find Full Text PDF

Introduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance.

Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated DSM 17938 (WRM).

View Article and Find Full Text PDF

The harmful effect of a long-term high-fructose diet is well established, but the age-dependent physiological responses that can be triggered by a short-term high-fructose diet in skeletal muscles have not been deeply explored. Therefore, the aim of this work was to compare the alterations in mitochondrial energetic and insulin responsiveness in the skeletal muscle induced by a short-term (2 weeks) fructose feeding in rats of different ages. For this purpose, fructose and uric acid levels, insulin sensitivity, mitochondrial bioenergetics and oxidative status were evaluated in the skeletal muscles from young (30 days old) and adult (90 days old) rats.

View Article and Find Full Text PDF

To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated.

View Article and Find Full Text PDF