Hypoxia, a condition characterized by a temporary lack of oxygen, causes mitochondrial damage, which in turn leads to endothelial dysfunction. G-protein-coupled receptor kinase 2 (GRK2) plays a key role in vascular homeostasis and remodeling, influencing endothelial function through various pathways. GRK2 moves within the cellular compartments and is linked to mitochondrial function and biogenesis, promoting ATP production and protecting against oxidative stress and cell death.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. The rising prevalence of CVD is primarily driven by several risk factors, including dyslipidemia, atherosclerosis, diabetes, and obesity. Many current studies are focused on unraveling the underlying pathophysiological mechanisms that govern these risk factors, with the main goal of identifying novel biomarkers and therapeutic targets to prevent the onset of CVD in the population.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Background And Purpose:: Accumulating evidence suggests circulating microRNAs (miRNAs) are important regulators of biological processes involved in COVID-19 complications. We sought to assess whether circulating miRNAs are associated with COVID-19 clinical phenotype and outcome.
Experimental Approach:: To discover signatures of circulating miRNAs associated with COVID-19 disease severity and mortality, miRNA quantification was performed on plasma samples collected at hospital admission from a cohort of 106 patients with mild or severe COVID-19.
Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or β acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds.
View Article and Find Full Text PDFIn recent decades, as a result of rising mortality rates due to cardiovascular diseases (CVDs), there has been a growing urgency to find alternative approaches to conventional pharmaceutical treatment to prevent the onset of chronic diseases. , commonly known as , is a blue-green cyanobacterium, classified as a "superfood", used worldwide as a nutraceutical food supplement due to its remarkable nutritional value, lack of toxicity, and therapeutic effects. Several scientific studies have evaluated the cardioprotective role of .
View Article and Find Full Text PDFAntioxidants (Basel)
January 2024
High glucose-induced endothelial dysfunction is an important pathological feature of diabetic vasculopathy. While genome-wide studies have identified an association between type 2 diabetes mellitus (T2DM) and increased expression of a C2 calcium-dependent domain containing 4B (C2CD4B), no study has yet explored the possible direct effect of C2CD4B on vascular function. Vascular reactivity studies were conducted using a pressure myograph, and nitric oxide and oxidative stress were assessed through difluorofluorescein diacetate and dihydroethidium, respectively.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors.
View Article and Find Full Text PDF