Publications by authors named "Andrey F Z Nascimento"

Nature is a rich and largely untapped reservoir of small molecules, the latter historically being the main source of new drugs. Three-dimensional structures of proteins in complex with small-molecule ligands represent key information to progress drug-discovery projects, in particular in the hit-to-lead phase. High-throughput crystallography has been of extensive use in recent years, especially to obtain crystallographic complexes of synthetic ligands and fragments.

View Article and Find Full Text PDF

The DNA damage response is a genetic information safeguard that protects cells from perpetuating damaged DNA. The characterization of the proteins that cooperate in this process allows the identification of alternative targets for therapeutic intervention in several diseases, such as cancer, aging-related diseases, and chronic inflammation. The Proximity Ligand Assay (PLA) emerged as a tool for estimating interaction between proteins as well as spatial proximity among organelles or cellular structures and allows the temporal localization and co-localization analysis under stress conditions, for instance.

View Article and Find Full Text PDF

Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown.

View Article and Find Full Text PDF

Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs.

View Article and Find Full Text PDF

A short 3-step synthesis of the antiviral agent 7DMA is described herein. The nature of a major by-product formed during the key -glycosylation of 6-chloro-7-deaza-7-iodopurine with perbenzoylated 2-methyl-ribose under Vorbrüggen conditions was also investigated. Spectroscopic analyses support that the solvent itself is converted into a nucleophilic species competing with the nucleobase and further reacting with the activated riboside in an unanticipated fashion.

View Article and Find Full Text PDF
Article Synopsis
  • The nucleocapsid (N) protein of coronaviruses is crucial for genome transcription and packaging, making it a prime focus for antiviral development.
  • A novel fluorescence polarization assay identified small molecules, notably L-chicoric acid (CA), that inhibit the N protein's binding to viral RNA.
  • CA was confirmed as a high-affinity ligand for the N protein and demonstrated effectiveness in reducing SARS-CoV-2 replication in cell cultures, highlighting potential new antiviral strategies.
View Article and Find Full Text PDF

Current studies estimate that 1-3% of females with unexplained intellectual disability (ID) present splice site, nonsense, frameshift, or missense mutations in the DDX3X protein (DEAD-Box Helicase 3 X-Linked). However, the cellular and molecular mechanisms by which DDX3X mutations impair brain development are not fully comprehended. Here, we show that the ID-linked missense mutation L556S renders DDX3X prone to aggregation.

View Article and Find Full Text PDF

The plant-specific class XI myosins (MyoXIs) play key roles at the molecular, cellular and tissue levels, engaging diverse adaptor proteins to transport cargoes along actin filaments. To recognize their cargoes, MyoXIs have a C-terminal globular tail domain (GTD) that is evolutionarily related to those of class V myosins (MyoVs) from animals and fungi. Despite recent advances in understanding the functional roles played by MyoXI in plants, the structure of its GTD, and therefore the molecular determinants for cargo selectivity and recognition, remain elusive.

View Article and Find Full Text PDF

The arginine repressor (ArgR) regulates the expression of genes involved in arginine biosynthesis. Upon attaining a threshold concentration of arginine in the cytoplasm, the trimeric C-terminal domain of ArgR binds three arginines in a shallow surface cleft and subsequently hexamerizes forming a dimer of trimers containing six Arg co-repressor molecules which are buried at the subunit interfaces. The N-terminal domains of this complex bind to the DNA promoter thereby interrupting the transcription of the genes related to Arg biosynthesis.

View Article and Find Full Text PDF

Ragulator is a pentamer composed of p18, MP1, p14, C7orf59, and hepatitis B virus X-interacting protein (HBXIP; LAMTOR 1-5) which acts as a lysosomal scaffold of the Rag GTPases in the amino acid sensitive branch of TORC1 signaling. Here, we present the crystal structure of human HBXIP-C7orf59 dimer (LAMTOR 4/5) at 2.9 Å and identify a phosphorylation site on C7orf59 which modulates its interaction with p18.

View Article and Find Full Text PDF

Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS).

View Article and Find Full Text PDF

Macromolecular structures can be solved by molecular replacement provided that suitable search models are available. Models from distant homologues may deviate too much from the target structure to succeed, notwithstanding an overall similar fold or even their featuring areas of very close geometry. Successful methods to make the most of such templates usually rely on the degree of conservation to select and improve search models.

View Article and Find Full Text PDF

MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure.

View Article and Find Full Text PDF

Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD.

View Article and Find Full Text PDF

Inflammation underlies the development and progression of a number of skin disorders including psoriasis, atopic dermatitis and cancer. Therefore, novel antiinflammatory agents are of great clinical interest for prevention and treatment of these conditions. Herein, we demonstrated the underlying molecular mechanisms of the antiinflammatory activity of euphol, a tetracyclic triterpene isolated from the sap of Euphorbia tirucalli, in skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in mice.

View Article and Find Full Text PDF

Endothelial dysfunction has been implicated in portal vein obstruction, a condition responsible for major complications in chronic portal hypertension. Increased vascular tone due to disruption of endothelial function has been associated with an imbalance in the equilibrium between endothelium-derived relaxing and contracting factors. Herein, we assessed underlying mechanisms by which expression of bradykinin B(1) receptor (B(1)R) is induced in the endothelium and how its stimulation triggers vasoconstriction in the rat portal vein.

View Article and Find Full Text PDF

Lipoxin A4 (LXA4) is a lipid mediator that plays an important role in the resolution of inflammation. However, the role of LXA4 and aspirin (ASA)-triggered lipoxins (ATLs) in inflammatory edema formation remains unclear. Here, we investigated the inhibitory role played by LXA4 in the carrageenan-induced and other inflammatory mediator-induced edematogenic response in mice, and also assessed the role of ATLs in the anti-edematogenic action of aspirin.

View Article and Find Full Text PDF