Leaf surface microbial communities play an important role in forest ecosystems and are known to be affected by environmental and host conditions, including diseases impacting the host. Phytophthora agathidicida is a soil-borne pathogen that causes severe disease (kauri dieback) in one of New Zealand's endemic trees, Agathis australis (kauri). This research characterised the microbial communities of the A.
View Article and Find Full Text PDFDespite recent advances in high-throughput DNA sequencing technologies, a lack of locally relevant DNA reference databases limits the potential for DNA-based monitoring of biodiversity for conservation and biosecurity applications. Museums and national collections represent a compelling source of authoritatively identified genetic material for DNA database development, yet obtaining DNA barcodes from long-stored specimens may be difficult due to sample degradation. Here we demonstrate a sensitive and efficient laboratory and bioinformatic process for generating DNA barcodes from hundreds of invertebrate specimens simultaneously via the Illumina MiSeq system.
View Article and Find Full Text PDFFEMS Microbiol Ecol
December 2021
The biodiversity and structure of deep agricultural soil communities are poorly understood, especially for eukaryotes. Using DNA metabarcoding and co-occurrence networks, we tested whether prokaryote, fungal, protist, and nematode biodiversity declines with increasing depth (0-0.1, 0.
View Article and Find Full Text PDFThe effects of land use on soil invertebrates - an important ecosystem component - are poorly understood. We investigated land-use impacts on a comprehensive range of soil invertebrates across New Zealand, measured using DNA metabarcoding and six biodiversity metrics. Rarity and phylogenetic rarity - direct measures of the number of species or the portion of a phylogeny unique to a site - showed stronger, more consistent responses across taxa to land use than widely used metrics of species richness, effective species numbers, and phylogenetic diversity.
View Article and Find Full Text PDFInvertebrates are a major component of terrestrial ecosystems, however, estimating their biodiversity is challenging. We compiled an inventory of invertebrate biodiversity along an elevation gradient on the temperate forested island of Hauturu, New Zealand, by DNA barcoding of specimens obtained from leaf litter samples and pitfall traps. We compared the barcodes and biodiversity estimates from this data set with those from a parallel DNA metabarcoding analysis of soil from the same locations, and with pre-existing sequences in reference databases, before exploring the use of combined data sets as a basis for estimating total invertebrate biodiversity.
View Article and Find Full Text PDFBackground: There is an increasing demand for rapid biodiversity assessment tools that have a broad taxonomic coverage. Here we evaluate a suite of environmental DNA (eDNA) markers coupled with next generation sequencing (NGS) that span the tree of life, comparing them with traditional biodiversity monitoring tools within ten 20×20 meter plots along a 700 meter elevational gradient.
Results: From six eDNA datasets (one from each of 16S, 18S, ITS, trnL and two from COI) we identified sequences from 109 NCBI taxonomy-defined phyla or equivalent, ranging from 31 to 60 for a given eDNA marker.
We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream).
View Article and Find Full Text PDFConcentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation.
View Article and Find Full Text PDFProtozoa are important components of microbial food webs, but protozoan feeding preferences and their effects in the context of bacterial biofilms are not well understood. The feeding interactions of two contrasting ciliates, the free-swimming filter feeder Tetrahymena sp. and the surface-associated predator Chilodonella sp.
View Article and Find Full Text PDFAppl Environ Microbiol
August 2009
Ciliates are an important component of aquatic ecosystems, acting as predators of bacteria and protozoa and providing nutrition for organisms at higher trophic levels. Understanding of the diversity and ecological role of ciliates in stream biofilms is limited, however. Ciliate diversity in biofilm samples from four streams subject to different impacts by human activity was assessed using microscopy and terminal restriction fragment length polymorphism (T-RFLP) analysis of 18S rRNA sequences.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2008
Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates.
View Article and Find Full Text PDF