Beneath Antarctica's ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf.
View Article and Find Full Text PDFDispersal of eggs and larvae from spawning sites is critical to the population dynamics and conservation of marine fishes. For overfished species like critically endangered Nassau grouper (), recovery depends on the fate of eggs spawned at the few remaining aggregation sites. Biophysical models can predict larval dispersal, yet these rely on assumed values of key parameters, such as diffusion and mortality rates, which have historically been difficult or impossible to estimate.
View Article and Find Full Text PDFThwaites Glacier is one of the fastest-changing ice-ocean systems in Antarctica. Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland, making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre. The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat, both of which are largely unknown.
View Article and Find Full Text PDFMicroscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution.
View Article and Find Full Text PDF