Publications by authors named "Andrea Barba-Bon"

Article Synopsis
  • Intracellular protein delivery has significant potential in cell biology and medicine, aiding in areas like bioimaging, disease treatment, and genome editing.* -
  • Researchers successfully delivered the functional protein cytochrome c (CYC) into lipid vesicles and live cells using a boron cluster anion carrier, achieving a cellular uptake rate of nearly 90%.* -
  • The method allowed CYC to enter the cytoplasm directly while maintaining its biological activity, showing a 25% increase in cell apoptosis at a low dose, highlighting the efficiency of inorganic cluster ions as protein delivery tools for future applications.*
View Article and Find Full Text PDF

Boron clusters are applied in medicinal chemistry because of their high stability in biological environments and intrinsic ability to capture neutrons. However, their intermolecular interactions with lipid membranes, which are critical for their cellular delivery and biocompatibility, have not been comprehensively investigated. In this study, we combine different experimental methods - Langmuir monolayer isotherms at the air-water interface, calorimetry (DSC, ITC), and scattering techniques (DLS, SAXS) - with MD simulations to evaluate the impact of closo-dodecaborate clusters on model membranes of different lipid composition.

View Article and Find Full Text PDF

Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are known antitumoral, antibacterial, antiviral, and anticancer agents and considered as next-generation metallodrugs. Herein, a new biological functionality in neutral physiological media, where selected mixed-metal POMs are sufficiently stable and able to affect membrane transport of impermeable, hydrophilic, and cationic peptides (heptaarginine, heptalysine, protamine, and polyarginine) is reported. The uptake is observed in both, model membranes as well as cells, and attributed to the superchaotropic properties of the polyoxoanions.

View Article and Find Full Text PDF

Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported.

View Article and Find Full Text PDF

Aqueous solubility and stability often limit the application of aminophenoxazinones and their sulfur mimics as promising agrochemicals in a sustainable agriculture inspired by allelopathy. This paper presents a solution to the problem using host-guest complexation with cucurbiturils (). Computational studies show that is the most suitably sized homologue due to its strong affinity for guest molecules and its high water solubility.

View Article and Find Full Text PDF

Gram-negative porins are the main entry for small hydrophilic molecules. We studied translocation of structurally related cephalosporins, ceftazidime (CAZ), cefotaxime (CTX) and cefepime (FEP). CAZ is highly active on E.

View Article and Find Full Text PDF

We report on the discovery of the first two examples of cationic palladium(II)-oxo clusters (POCs) containing f-metal ions, [Pd O M {(CH ) AsO } (H O) ] (M=Ce , Th ), and their physicochemical characterization in the solid state, in solution and in the gas phase. The molecular structure of the two novel POCs comprises an octahedral {Pd O } core that is capped by eight M ions, resulting in a cationic, cubic assembly {Pd O M } , which is coordinated by a total of 16 terminal dimethylarsinate and eight water ligands, resulting in the mixed Pd -Ce /Th oxo-clusters [Pd O M {(CH ) AsO } (H O) ] (M=Ce, Pd Ce ; Th, Pd Th ). We have also studied the formation of host-guest inclusion complexes of Pd Ce and Pd Th with anionic 4-sulfocalix[n]arenes (n=4, 6, 8), resulting in the first examples of discrete, enthalpically-driven supramolecular assemblies between large metal-oxo clusters and calixarene-based macrocycles.

View Article and Find Full Text PDF

The membrane translocation of hydrophilic substances constitutes a challenge for their application as therapeutic compounds and labelling probes. To remedy this, charged amphiphilic molecules have been classically used as carriers. However, such amphiphilic carriers may cause aggregation and non-specific membrane lysis.

View Article and Find Full Text PDF

Parallel artificial membrane permeability assay (PAMPA) is a screening tool for the evaluation of drug permeability across various biological membrane systems in a microplate format. In PAMPA, a drug candidate is allowed to pass through the lipid layer of a particular well during an incubation period of, typically, 10-16 h. In a second step, the samples of each well are transferred to a UV-Vis-compatible microplate and optically measured (applicable only to analytes with sufficient absorbance) or sampled by mass-spectrometric analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Lysine (K) is a crucial amino acid for delivering proteins and peptides across cell membranes, but finding effective transport activators for K-rich molecules is more complex than for arginine-rich ones.
  • Researchers developed a new compound, amphiphilic sulfonatocalix[5]arene (sCx5-6C), designed to recognize K and penetrate membranes.
  • The study showed that sCx5-6C significantly enhances the transport of lysine-rich peptides and proteins across artificial membranes and into live cells, outperforming existing arginine-compatible transporters.
View Article and Find Full Text PDF

The combination of supramolecular functional systems with biomolecular chemistry has been a fruitful exercise for decades, leading to a greater understanding of biomolecules and to a great variety of applications, for example, in drug delivery and sensing. Within these developments, the phospholipid bilayer membrane, surrounding live cells, with all its functions has also intrigued supramolecular chemists. Herein, recent efforts from the supramolecular chemistry community to mimic natural functions of lipid membranes, such as sensing, molecular recognition, membrane fusion, signal transduction, and gated transport, are reviewed.

View Article and Find Full Text PDF

The membrane transport mechanisms of cell-penetrating peptides (CPPs) are still controversial, and reliable assays to report on their internalization in model membranes are required. Herein, we introduce a label-free, fluorescence-based method to monitor membrane transport of peptides in real time. For this purpose, a macrocyclic host and a fluorescent dye forming a host-dye reporter pair are encapsulated inside phospholipid vesicles.

View Article and Find Full Text PDF

Phosphorylation and dephosphorylation of peptides by kinases and phosphatases is essential for signal transduction in biological systems, and many diseases involve abnormal activities of these enzymes. Herein, we introduce amphiphilic calixarenes as key components for supramolecular, phosphorylation-responsive membrane transport systems. Dye-efflux experiments with liposomes demonstrated that calixarenes are highly active counterion activators for established cell-penetrating peptides, with EC values in the low nanomolar range.

View Article and Find Full Text PDF

A BODIPY-containing Cu(II) -bipyridine complex for the simple selective fluorogenic detection of NO in air and in live cells is reported. The detection mechanism is based on NO-promoted Cu(II) to Cu(I) reduction, followed by demetallation of the complex, which results in the clearly enhanced emission of the boron dipyrromethene (BODIPY) unit.

View Article and Find Full Text PDF

A new photosensitizer (1) based on the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) scaffold has been synthesized. 1 is water soluble and showed an intense absorption band at 490 nm (ɛ=77,600 cm(-1)  m(-1)) and an emission at 514 nm. In vitro toxicity of 1 in the presence of light and in darkness has been studied with HeLa, HaCaT, MCF-7, and SCC-13 cell lines.

View Article and Find Full Text PDF

We report herein a study of the hydrolysis of Tabun mimic DCNP in the presence of different amines, aminoalcohols and glycols as potential suitable organocatalysts for DCNP degradation. Experiments were performed in CD3CN in the presence of 5% D2O, which is a suitable solvent mixture to follow the DCNP hydrolysis. These studies allowed the definition of different DCNP depletion paths, resulting in the formation of diethylphosphoric acid, tetraethylpyrophosphate and phosphoramide species as final products.

View Article and Find Full Text PDF

A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared. Probe P4 contains three reactive sites; i.e.

View Article and Find Full Text PDF

Two new Eu(3+) and Au(3+) BODIPY-complexes capable of chromo-fluorogenically detecting micromolar concentrations of V-type nerve agent surrogates by a simple displacement assay are described.

View Article and Find Full Text PDF

Two chromo-fluorogenic probes, each based on the boron dipyrromethene core, have been developed for the detection of nerve-agent mimics. These chemosensors display both a color change and a significant enhancement of fluorescence in the presence of diethylcyanophosphonate (DCNP) and diisopropylfluorophosphate (DFP). No interference from other organophosphorus compounds or acids has been observed.

View Article and Find Full Text PDF

A new selective chromo-fluorogenic probe for Fe(3+), Cr(3+) and Al(3+) is reported. Detection limits are in the μM range and the fluorogenic sensing ability could be observed by the naked eye when illuminated with UV-light. No response is observed with divalent cations.

View Article and Find Full Text PDF