Perception relies on hierarchical processes integrating sensory data into higher-order models about the world. In the sensory domain, this hierarchy also involves horizontal pathways aiding interhemispheric interactions. For example, recent focus on the V5-V5 network revealed its role in motion processing.
View Article and Find Full Text PDFNeural synchrony is hypothesized to play a crucial role in how the brain organizes visual scenes into structured representations, enabling the robust encoding of multiple objects within a scene. However, current deep learning models often struggle with object binding, limiting their ability to represent multiple objects effectively. Inspired by neuroscience, we investigate whether synchrony-based mechanisms can enhance object encoding in artificial models trained for visual categorization.
View Article and Find Full Text PDFRecent studies have shown that cortical low-frequency oscillations are often organized as traveling waves. The properties of these waves have been linked to both sensory processing and cognitive functions. In EEG recordings, alpha-band (~10Hz) traveling waves propagate predominantly along the occipital-frontal axis, with forward waves being most prominent during visual processing, while backward waves dominate at rest and during sensory suppression.
View Article and Find Full Text PDFWe propose a mathematical framework to systematically explore the propagation properties of a class of continuous in time nonlinear neural network models comprising a hierarchy of processing areas, mutually connected according to the principles of predictive coding. We precisely determine the conditions under which upward propagation, downward propagation or even propagation failure can occur in both bi-infinite and semi-infinite idealizations of the model. We also study the long-time behavior of the system when either a fixed external input is constantly presented at the first layer of the network or when this external input consists in the presentation of constant input with large amplitude for a fixed time window followed by a reset to a down state of the network for all later times.
View Article and Find Full Text PDFBeta-band oscillations have been suggested to promote the maintenance of the current motor (or cognitive) set, thus signaling the 'status quo' of the system. While this hypothesis has been reliably demonstrated in many studies, it fails to explain changes in beta-band activity due to the accumulation of physical fatigue. In the current study, we aimed to reconcile the functional role of beta oscillations during physical fatigue within the status quo theory.
View Article and Find Full Text PDFBackground: The computational mechanisms underlying psychiatric disorders are hotly debated. One hypothesis, grounded in the Bayesian predictive coding framework, proposes that patients with schizophrenia have abnormalities in encoding prior beliefs about the environment, resulting in abnormal sensory inference, which can explain core aspects of the psychopathology, such as some of its symptoms.
Methods: Here, we tested this hypothesis by identifying oscillatory traveling waves as neural signatures of predictive coding.
While previous works established the inhibitory role of alpha oscillations during working memory maintenance, it remains an open question whether such an inhibitory control is a top-down process. Here, we attempted to disentangle this issue by considering the spatiotemporal component of waves in the alpha band, i.e.
View Article and Find Full Text PDFIn natural behaviors, multiple neural signals simultaneously drive activation across overlapping brain networks. Due to limitations in the amount of data that can be acquired in common experimental designs, the determination of these interactions is commonly inferred via modeling approaches, which reduce overfitting by finding appropriate regularizing hyperparameters. However, it is unclear whether these hyperparameters can also be related to any aspect of the underlying biological phenomena and help interpret them.
View Article and Find Full Text PDFThe intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue.
View Article and Find Full Text PDFWhile physical performance has long been thought to be limited only by physiological factors, many experiments denote that psychological ones can also influence it. Specifically, the deception paradigm investigates the effect of psychological factors on performance by manipulating a psychological variable unbeknownst to the subjects. For example, during a physical exercise performed to failure, previous results revealed an improvement in performance (i.
View Article and Find Full Text PDFBrain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e.
View Article and Find Full Text PDFPrevious research has associated alpha-band [8-12 Hz] oscillations with inhibitory functions: for instance, several studies showed that visual attention increases alpha-band power in the hemisphere ipsilateral to the attended location. However, other studies demonstrated that alpha oscillations positively correlate with visual perception, hinting at different processes underlying their dynamics. Here, using an approach based on traveling waves, we demonstrate that there are two functionally distinct alpha-band oscillations propagating in different directions.
View Article and Find Full Text PDFBrain-inspired machine learning is gaining increasing consideration, particularly in computer vision. Several studies investigated the inclusion of top-down feedback connections in convolutional networks; however, it remains unclear how and when these connections are functionally helpful. Here we address this question in the context of object recognition under noisy conditions.
View Article and Find Full Text PDFVisual understanding requires comprehending complex visual relations between objects within a scene. Here, we seek to characterize the computational demands for abstract visual reasoning. We do this by systematically assessing the ability of modern deep convolutional neural networks (CNNs) to learn to solve the synthetic visual reasoning test (SVRT) challenge, a collection of 23 visual reasoning problems.
View Article and Find Full Text PDFNeurosci Conscious
March 2021
Alpha rhythms (∼10Hz) in the human brain are classically associated with idling activities, being predominantly observed during quiet restfulness with closed eyes. However, recent studies demonstrated that alpha (∼10Hz) rhythms can directly relate to visual stimulation, resulting in oscillations, which can last for as long as one second. This alpha reverberation, dubbed perceptual echoes (PE), suggests that the visual system actively samples and processes visual information within the alpha-band frequency.
View Article and Find Full Text PDFIn recent years artificial neural networks achieved performance close to or better than humans in several domains: tasks that were previously human prerogatives, such as language processing, have witnessed remarkable improvements in state of the art models. One advantage of this technological boost is to facilitate comparison between different neural networks and human performance, in order to deepen our understanding of human cognition. Here, we investigate which neural network architecture (feedforward vs.
View Article and Find Full Text PDFThe development of deep convolutional neural networks (CNNs) has recently led to great successes in computer vision, and CNNs have become de facto computational models of vision. However, a growing body of work suggests that they exhibit critical limitations on tasks beyond image categorization. Here, we study one such fundamental limitation, concerning the judgment of whether two simultaneously presented items are the same or different (SD) compared with a baseline assessment of their spatial relationship (SR).
View Article and Find Full Text PDFTraveling waves have been studied to characterize the complex spatiotemporal dynamics of the brain. Several studies have suggested that the propagation direction of α traveling waves can be task dependent. For example, a recent electroencephalography (EEG) study from our group found that forward waves (i.
View Article and Find Full Text PDFPsychedelic drugs are potent modulators of conscious states and therefore powerful tools for investigating their neurobiology. N,N, Dimethyltryptamine (DMT) can rapidly induce an extremely immersive state of consciousness characterized by vivid and elaborate visual imagery. Here, we investigated the electrophysiological correlates of the DMT-induced altered state from a pool of participants receiving DMT and (separately) placebo (saline) while instructed to keep their eyes closed.
View Article and Find Full Text PDFPredictive coding is a key mechanism to understand the computational processes underlying brain functioning: in a hierarchical network, higher levels predict the activity of lower levels, and the unexplained residuals (i.e., prediction errors) are passed back to higher layers.
View Article and Find Full Text PDFPupil size under constant illumination reflects brain arousal state, and dilates in response to novel information, or surprisal. Whether this response can be observed regardless of conscious perception is still unknown. In the present study, male and female adult humans performed an implicit learning task across a series of three experiments.
View Article and Find Full Text PDFFront Hum Neurosci
October 2018
Visual attention allows relevant information to be selected for further processing. Both conscious and unconscious visual stimuli can bias attentional allocation, but how these two types of visual information interact to guide attention remains unclear. In this study, we explored attentional allocation during a motion discrimination task with varied motion strength and unconscious associations between stimuli and cues.
View Article and Find Full Text PDF