Publications by authors named "Andre L M Reis"

Background: The central bearded dragon (Pogona vitticeps) is widely distributed in central eastern Australia and adapts readily to captivity. Among other attributes, it is distinctive because it undergoes sex reversal from ZZ genotypic males to phenotypic females at high incubation temperatures. Here, we report an annotated near telomere-to-telomere phased assembly of the genome of a female ZW central bearded dragon.

View Article and Find Full Text PDF

Tandem repeats (TRs) - highly polymorphic, repetitive sequences dispersed across the human genome - are crucial regulators of gene expression and diverse biological processes, but have remained underexplored relative to other classes of genetic variation due to historical challenges in their accurate calling and analysis. Here, we leverage whole genome and single-cell RNA sequencing from over 5.4 million blood-derived cells from 1,925 individuals to explore the impact of variation in over 1.

View Article and Find Full Text PDF

The eastern 3-lined skink (Bassiana duperreyi) inhabits the Australian high country in the southeast of the continent including Tasmania. It is a distinctive oviparous species because it undergoes sex reversal (from XX genotypic females to phenotypic males) at low incubation temperatures. We present a chromosome-scale genome assembly of a B.

View Article and Find Full Text PDF

Objective: The hereditary spastic-ataxia spectrum disorders are a group of disabling neurological diseases. The traditional genetic testing pathway is complex, multistep and leaves many cases unsolved. We aim to streamline and improve this process using long-read sequencing.

View Article and Find Full Text PDF

Background: Loss-of-function variants in MME (membrane metalloendopeptidase) are a known cause of recessive Charcot-Marie-Tooth Neuropathy (CMT). A deep intronic variant, MME c.1188+428A>G (NM_000902.

View Article and Find Full Text PDF

The expression of genes encompasses their transcription into mRNA followed by translation into protein. In recent years, next-generation sequencing and mass spectrometry methods have profiled DNA, RNA and protein abundance in cells. However, there are currently no reference standards that are compatible across these genomic, transcriptomic and proteomic methods, and provide an integrated measure of gene expression.

View Article and Find Full Text PDF

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine.

View Article and Find Full Text PDF

, the golden mussel, is a bivalve mollusk considered an invader in South America. This species is responsible for ecological and economic damages due to its voluminous fouling capability. Chemical biocides such as MXD-100™ and sodium dichloroisocyanurate (NaDCC) are often used to control infestations in hydraulic systems.

View Article and Find Full Text PDF

Library adaptors are short oligonucleotides that are attached to RNA and DNA samples in preparation for next-generation sequencing (NGS). Adaptors can also include additional functional elements, such as sample indexes and unique molecular identifiers, to improve library analysis. Here, we describe Control Library Adaptors, termed CAPTORs, that measure the accuracy and reliability of NGS.

View Article and Find Full Text PDF

Our understanding of the molecular pathology of posttraumatic stress disorder (PTSD) is evolving due to advances in sequencing technologies. With the recent emergence of Oxford Nanopore direct RNA-seq (dRNA-seq), it is now also possible to interrogate diverse RNA modifications, collectively known as the "epitranscriptome.".

View Article and Find Full Text PDF

The notion that mobile units of nucleic acid known as transposable elements can operate as genomic controlling elements was put forward over six decades ago. However, it was not until the advancement of genomic sequencing technologies that the abundance and repertoire of transposable elements were revealed, and they are now known to constitute up to two-thirds of mammalian genomes. The presence of DNA regulatory regions including promoters, enhancers and transcription-factor-binding sites within transposable elements has led to the hypothesis that transposable elements have been co-opted to regulate mammalian gene expression and cell phenotype.

View Article and Find Full Text PDF

Background: Next-generation sequencing (NGS) can identify mutations in the human genome that cause disease and has been widely adopted in clinical diagnosis. However, the human genome contains many polymorphic, low-complexity, and repetitive regions that are difficult to sequence and analyze. Despite their difficulty, these regions include many clinically important sequences that can inform the treatment of human diseases and improve the diagnostic yield of NGS.

View Article and Find Full Text PDF

Microfouling, ie biofilm formation on surfaces, can have an economic impact and requires costly maintenance in water-powered energy generation systems. In this study, the microbiota of a cooling system (filter and heat exchanger) in the Irapé hydroelectric power plant in Brazil was examined. The goal was to identify bacteria that could be targeted to more efficiently reduce biofilm formation.

View Article and Find Full Text PDF

DNA synthesis in vitro has enabled the rapid production of reference standards. These are used as controls, and allow measurement and improvement of the accuracy and quality of diagnostic tests. Current reference standards typically represent target genetic material, and act only as positive controls to assess test sensitivity.

View Article and Find Full Text PDF

Standard units of measurement are required for the quantitative description of nature; however, few standard units have been established for genomics to date. Here, we have developed a synthetic DNA ladder that defines a quantitative standard unit that can measure DNA sequence abundance within a next-generation sequencing library. The ladder can be spiked into a DNA sample, and act as an internal scale that measures quantitative genetics features.

View Article and Find Full Text PDF

Next-generation sequencing (NGS) has been widely adopted to identify genetic variants and investigate their association with disease. However, the analysis of sequencing data remains challenging because of the complexity of human genetic variation and confounding errors introduced during library preparation, sequencing and analysis. We have developed a set of synthetic DNA spike-ins-termed 'sequins' (sequencing spike-ins)-that are directly added to DNA samples before library preparation.

View Article and Find Full Text PDF

The huge increase in data being produced in the genomic era has produced a need to incorporate computers into the research process. Sequence generation, its subsequent storage, interpretation, and analysis are now entirely computer-dependent tasks. Universities from all over the world have been challenged to seek a way of encouraging students to incorporate computational and bioinformatics skills since undergraduation in order to understand biological processes.

View Article and Find Full Text PDF