Publications by authors named "Anat Eldar-Boock"

Following administration of the SARS-CoV-2 vaccine, many women worldwide reported short-term menstrual irregularities. Although menstrual bleeding, "the fifth vital sign", is experienced by more than 300 million people on any given day worldwide, these changes were only partially studied. Irregular periods are important well beyond fertility and the discomfort they impose; they are associated with the risk of cardiovascular morbidity, chronic diseases, and premature mortality.

View Article and Find Full Text PDF

Research Question: What is the involvement of pigment epithelium-derived factor (PEDF), expressed in granulosa cells, in folliculogenesis?

Design: mRNA expression of PEDF and other key factors [Cyp19, anti-Müllerian hormone receptor (AMHR) and vascular endothelial growth factor (VEGF)] in mice follicles was examined in order to typify the expression of PEDF in growing follicles and in human primary granulosa cells (hpGC), and to follow the interplay between PEDF and the other main players in folliculogenesis: FSH and AMH.

Results: mRNA expression of PEDF increased through folliculogenesis, although the pattern differed from that of the other examined genes, affecting the follicular angiogenic and oxidative balance. In hpGC, prolonged exposure to FSH stimulated the up-regulation of PEDF mRNA.

View Article and Find Full Text PDF

Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process.

View Article and Find Full Text PDF

Reproductive aging is characterized by a decline in ovarian function and in oocytes' quantity and quality. Pigment epithelium-derived factor (PEDF), a pivotal player in ovarian angiogenic and oxidative balance, was evaluated for its involvement in reproductive aging. Our work examines the initial stage of reproductive aging in women and mice, and the involvement of PEDF in the process.

View Article and Find Full Text PDF

Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology.

View Article and Find Full Text PDF

Molecular changes, caused by various environmental factors, affect the quality and developmental potential of oocytes. Oxidative stress (OS) is a major factor involved in various gynecologic disorders and/or in aging. Recent studies suggest that elevated reactive oxygen species (ROS) hamper oocyte quality and future embryonic development.

View Article and Find Full Text PDF

The most common site of breast cancer metastasis is the bone, occurring in approximately 70% of patients with advanced disease. Bone metastasis is associated with severe morbidities and high mortality. Therefore, deeper understanding of the mechanisms that enable bone-metastatic relapse are urgently needed.

View Article and Find Full Text PDF

Targeted therapies against cancer can relieve symptoms and induce remission, however, they often present limited duration of disease control, cause side effects and often induce acquired resistance. Therefore, there is a great motivation to develop a unique delivery system, targeted to the tumor, in which we can combine several active entities, increase the therapeutic index by reducing systemic exposure, and enhance their synergistic activity. To meet these goals, we chose the biocompatible and biodegradable poly(α,L-glutamic acid) (PGA) as a nanocarrier that facilitates extravasation-dependent tumor targeting delivery.

View Article and Find Full Text PDF

Chemiluminescence offers advantages over fluorescence for bioimaging, since an external light source is unnecessary with chemiluminescent agents. This report demonstrates the first encapsulation of chemiluminescence phenoxy-adamantyl-1,2-dioxetane probes with trimethyl β-cyclodextrin. Clear proof for the formation of a 1 : 1 host-guest complex between the adamantyl-1,2-dioxetane probe and trimethyl β-cyclodextrin was provided by mass spectroscopy and NMR experiments.

View Article and Find Full Text PDF

Complete tumor removal during surgery has a great impact on patient survival. To that end, the surgeon should detect the tumor, remove it and validate that there are no residual cancer cells left behind. Residual cells at the incision margin of the tissue removed during surgery are associated with tumor recurrence and poor prognosis for the patient.

View Article and Find Full Text PDF

Glioblastoma is an aggressive and invasive brain malignancy with high mortality rates despite current treatment modalities. In this study, we show that a 7-gene signature, previously found to govern the switch of glioblastomas from dormancy to aggressive tumor growth, correlates with improved overall survival of patients with glioblastoma. Using glioblastoma dormancy models, we validated the role of 2 genes from the signature, thrombospondin-1 ( TSP-1) and epidermal growth factor receptor ( EGFR), as regulators of glioblastoma dormancy and explored their therapeutic potential.

View Article and Find Full Text PDF

Neural cell adhesion molecule (NCAM) is found to be a stem-cell marker in several tumor types and its overexpression is known to correlate with increased metastatic capacity. To combine extravasation- and ligand-dependent targeting to NCAM overexpressing-cells in the tumor microenvironment, we developed a PEGylated NCAM-targeted dendritic polyglycerol (PG) conjugate. Here, we describe the synthesis, physico-chemical characterization and biological evaluation of a PG conjugate bearing the mitotic inhibitor paclitaxel (PTX) and an NCAM-targeting peptide (NTP).

View Article and Find Full Text PDF

A recent methodology, developed by our group, has enabled a dramatic improvement in the emissive nature of the excited species, formed during the chemiexcitation of dioxetanes under physiological conditions. This approach has resulted in the discovery of distinct phenoxy-dioxetane luminophores that produce a chemiluminescence signal via a direct-mode of emission. Here, we show a significant pK effect of our new phenoxy-dioxetanes on their chemiexcitation and on their ability to serve as chemiluminescent turn-ON probes for biological applications.

View Article and Find Full Text PDF

Glioblastoma is a highly aggressive brain tumor. Current standard-of-care results in a marginal therapeutic outcome, partly due to acquirement of resistance and insufficient blood-brain barrier (BBB) penetration of chemotherapeutics. To circumvent these limitations, we conjugated the chemotherapy paclitaxel (PTX) to a dendritic polyglycerol sulfate (dPGS) nanocarrier.

View Article and Find Full Text PDF

Chemiluminescent luminophores are considered as one of the most sensitive families of probes for detection and imaging applications. Due to their high signal-to-noise ratios, luminophores with near-infrared (NIR) emission are particularly important for in vivo use. In addition, light with such long wavelength has significantly greater capability for penetration through organic tissue.

View Article and Find Full Text PDF

The generation of rationally designed polymer therapeutics via the conjugation of low molecular weight anti-cancer drugs to water-soluble polymeric nanocarriers aims to improve the therapeutic index. Here, we focus on applying polymer therapeutics to target two cell compartments simultaneously - tumour cells and angiogenic endothelial cells. Comparing different polymeric backbones carrying the same therapeutic agent and targeting moiety may shed light on any correlation between the choice of polymer and the anti-cancer activity of the conjugate.

View Article and Find Full Text PDF

Cancer stem cells (CSC) form a specific population within the tumor that has been shown to have self-renewal and differentiation properties, increased ability to migrate and form metastases, and increased resistance to chemotherapy. Consequently, even a small number of cells remaining after therapy can repopulate the tumor and cause recurrence of the disease. CSCs in Wilms tumor, a pediatric renal cancer, were previously shown to be characterized by neural cell adhesion molecule (NCAM) expression.

View Article and Find Full Text PDF

Neural cell adhesion molecule (NCAM) expression is known to be associated with an aggressive biological behavior, increased metastatic capacity and expression of stem-cell markers in several tumor types. NCAM was also found to be expressed on tumor endothelial cells while forming new capillary-like tubes, but not on normal endothelial cells. An NCAM-targeted polymer-drug conjugate can be used both to target tumors expressing high levels of NCAM as well as the angiogenic vessels and cancer stem cells populations characterized by NCAM expression within tumors.

View Article and Find Full Text PDF

Chemiluminescence is among the most sensitive methods for achieving a high signal-to-noise ratio in various chemical and biological applications. We have developed a modular practical synthetic route for preparation of turn-ON fluorophore-tethered dioxetane chemiluminescent probes. The chemiluminescent emission of the probes was significantly amplified through an energy-transfer mechanism under physiological conditions.

View Article and Find Full Text PDF

Nowadays, combination therapy became a standard in oncology. In this study, we compare the activity of two polymeric carriers bearing a combination of the anticancer drugs paclitaxel (PTX) and doxorubicin (DOX), which differ mainly in their architecture and supramolecular assembly. Drugs were covalently bound to a linear polymer, polyglutamic acid (PGA) or to a dendritic scaffold, polyglycerol (PG) decorated with poly(ethylene glycol) (PEG), forming PGA-PTX-DOX and PG-PTX-bz-DOX-PEG, respectively.

View Article and Find Full Text PDF

Ligand-receptor mediated targeting may affect differently the performance of supramolecular drug carriers depending on the nature of the nanocarrier. In this study, we compare the selectivity, safety and activity of doxorubicin (Dox) entrapped in liposomes versus Dox conjugated to polymeric nanocarriers in the presence or absence of a folic acid (FA)-targeting ligand to cancer cells that overexpress the folate receptor (FR). Two pullulan (Pull)-based conjugates of Dox were synthesized, (FA-PEG)-Pull-(Cyst-Dox) and (NH2-PEG)-Pull-(Cyst-Dox).

View Article and Find Full Text PDF

A novel polysaccharide bioconjugate was designed to selectively target breast cancer bone metastases using a bisphosphonate moiety (alendronate, ALN). Paclitaxel (PTX) was first covalently conjugated to pullulan (Pull) through a Cathepsin K-sensitive tetrapeptide spacer followed by a self-immolative aminobenzyl alcohol spacer to obtain Pull-(GGPNle-φ-PTX). ALN was then conjugated to the polymeric backbone of Pull-(GGPNle-φ-PTX) via a PEG spacer.

View Article and Find Full Text PDF

The standard of care for cancer patients comprises more than one therapeutic agent. Treatment is complex since several drugs, administered by different routes, need to be coordinated, taking into consideration their side effects and mechanisms of resistance. Drug delivery systems (DDS), such as polymers and liposomes, are designed to improve the pharmacokinetics and efficacy of bioactive agents (drugs, proteins or oligonucleotides), while reducing systemic toxicity.

View Article and Find Full Text PDF

Paclitaxel (PTX) and alendronate (ALN) are effective drugs used for the treatment of breast cancer bone metastases. Growing evidence suggests that low-dose taxanes and bisphosphonates possess anti-angiogenic properties. However, PTX is water-insoluble and toxic, even if administered at anti-angiogenic dosing schedule.

View Article and Find Full Text PDF