Publications by authors named "Anantharaj Rengaraj"

White adipose tissue (WAT) and brown adipose tissue (BAT) have distinct structural and physiological characteristics and serve opposing functions in the body. WAT primarily stores energy, whereas BAT is metabolically active and positively influences metabolic health, contributing to energy expenditure, reduced fat accumulation and enhanced mitochondrial metabolism. Recently, both classical BAT and beige fat (or inducible/recruitable BAT) that arises from the browning of WAT have attracted clinical interest as potential targets for improving mitochondrial metabolism and managing obesity-related metabolic disorders.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) is a promising weapon to combat obesity and metabolic disease. BAT is thermogenic and consumes substantial amounts of glucose and fatty acids as fuel for thermogenesis and energy expenditure. To study BAT function in large human longitudinal cohorts, safe and precise detection methodologies are needed.

View Article and Find Full Text PDF

Investigations of long-term exercise interventions in humans to reverse obesity is expensive and is hampered by poor compliance and confounders. In the present study, we investigated intrahepatic and muscle fat, visceral and subcutaneous fat pads, plasma metabolic profile and skeletal muscle inflammatory markers in response to 12-week aerobic exercise in an obese rodent model. Six-week-old male Wistar rats (n=20) were randomized to chow-fed control (Control, n=5), sedentary high-fat diet (HFD, n=5), chow-fed exercise (Exercise, n=5) and HFD-fed exercise (HFD+Exercise, n=5) groups.

View Article and Find Full Text PDF

The current COVID-19 pandemic is probably the worst the world has ever faced since the start of the new millennium. Although the respiratory system is the most prominent target of SARS-CoV-2 (the contagion of COVID-19), extrapulmonary involvement are emerging as important contributors of its morbidity and lethality. This article summarizes the impact of SARS-CoV and SARS-CoV-2 on the endocrine system to facilitate our understanding of the nature of coronavirus-associated endocrinopathy.

View Article and Find Full Text PDF

Purpose: The vascular blood flow in brown adipose tissue (BAT) is important for handling triglyceride clearance, increased blood flow and oxygenation. We used dynamic contrast-enhanced (DCE)-MRI and fat fraction (FF) imaging for investigating vascular perfusion kinetics in brown and beige adipose tissues with cold exposure or treatment with β3-adrenergic agonist.

Methods: FF imaging and DCE-MRI using gadolinium-diethylenetriaminepentaacetic acid were performed in interscapular BAT (iBAT) and beige tissues using male Wister rats (n = 38).

View Article and Find Full Text PDF

There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples.

View Article and Find Full Text PDF

High doses of dexamethasone (Dex) or myostatin (Mstn) induce severe atrophy of skeletal muscle. Here we show a novel microRNA1 (miR1)-mediated mechanism through which Dex promotes skeletal muscle atrophy. Using both C2C12 myotubes and mouse models of Dex-induced atrophy we show that Dex induces miR1 expression through glucocorticoid receptor (GR).

View Article and Find Full Text PDF