Publications by authors named "Anahit Galstyan"

Seedlings must continually calibrate their growth in response to the environment. Auxin and brassinosteroids (BRs) are plant hormones that work together to control growth responses during photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR target gene to guide our investigation into the broader molecular bases and biological relevance of transcriptional co-regulation by these hormones.

View Article and Find Full Text PDF

There is an increasing appreciation for the role of physical forces in plant development. Mechanics are fundamental to how explosive fruit eject their seeds, and recent studies have successfully combined mechanics with developmental genetics to help explain how these dispersal traits are produced and how they evolved. Computational modeling is used more and more to address developmental questions, and explosive fruit are particularly good systems for combining biology and modeling approaches.

View Article and Find Full Text PDF

When plants grow in close proximity basic resources such as light can become limiting. Under such conditions plants respond to anticipate and/or adapt to the light shortage, a process known as the shade avoidance syndrome (SAS). Following genetic screening using a shade-responsive luciferase reporter line (PHYB:LUC), we identified DRACULA2 (DRA2), which encodes an Arabidopsis homolog of mammalian nucleoporin 98, a component of the nuclear pore complex (NPC).

View Article and Find Full Text PDF

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation.

View Article and Find Full Text PDF

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light with a reduced red to far-red ratio, indicative of vegetation proximity or shade. These responses, including elongation growth, anticipate eventual shading from potential competitor vegetation by overgrowing neighboring plants or flowering to ensure production of viable seeds for the next generation. In Arabidopsis thaliana seedlings, the SAS includes dramatic changes in gene expression, such as induction of PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), encoding an atypical basic helix-loop-helix (bHLH) protein that acts as a transcriptional co-factor to repress hypocotyl elongation.

View Article and Find Full Text PDF

As photoautotrophs, plants are exquisitely sensitive to their light environment. Light affects many developmental and physiological responses throughout plants' life histories. The focus of this chapter is on light effects during the crucial period of time between seed germination and the development of the first true leaves.

View Article and Find Full Text PDF

PAR1 is an atypical basic-helix-loop-helix (bHLH) protein that negatively regulates the shade avoidance syndrome in Arabidopsis thaliana acting as a transcriptional cofactor. Consistently with this function, PAR1 has to be in the nucleus to display biological activity. Previous structure-function analyses revealed that the N-terminal region of PAR1 drives the protein to the nucleus.

View Article and Find Full Text PDF

The shade avoidance syndrome (SAS) refers to a set of plant responses aimed at anticipating eventual shading by potential competitors. The SAS is initiated after perception of nearby vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. Low R:FR light is perceived by the phytochromes, triggering dramatic changes in gene expression that, in seedlings, eventually result in an increased hypocotyl elongation to overgrow competitors.

View Article and Find Full Text PDF

Basic helix-loop-helix proteins (bHLHs) are found throughout the three eukaryotic kingdoms and constitute one of the largest families of transcription factors. A growing number of bHLH proteins have been functionally characterized in plants. However, some of these have not been previously classified.

View Article and Find Full Text PDF

PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 are two negative regulators of shade avoidance syndrome (SAS) responses in Arabidopsis. PAR1 and PAR2 belong to the bHLH family of transcription factors and act as direct transcriptional repressors of auxin- and brassinosteroid-responsive genes. These observations led us to propose that PAR1 and PAR2 might integrate shade and hormone signals.

View Article and Find Full Text PDF

Plants sense the presence of potentially competing nearby individuals as a reduction in the red to far-red ratio of the incoming light. In anticipation of eventual shading, a set of plant responses known as the shade avoidance syndrome (SAS) is initiated soon after detection of this signal by the phytochrome photoreceptors. Here we analyze the function of PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2, two Arabidopsis thaliana genes rapidly upregulated after simulated shade perception.

View Article and Find Full Text PDF