Metabolism involves a wide range of pathways and chemical reactions catalysed by specialized enzymes whose activity is fundamental for living cells. In the past three decades, metabolic enzymes have emerged as critical regulators of gene expression, thus revealing unexpected functions beyond their canonical metabolic roles. In this Review, we discuss the evidences that these enzymes, with a particular focus on enzymes participating in the glucose metabolism, can directly bind RNA.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are involved in many biological processes. The direct interaction between protein and RNA can be studied using cross-linking immunoprecipitation (CLIP) techniques in living cells. Here, we present a protocol to characterize the direct binding of proteins to RNA:DNA hybrids or RNA-DNA chimeras in living cells using CLIP.
View Article and Find Full Text PDFA better understanding of the RNA biology and chemistry is necessary to then develop new RNA therapeutic strategies. This review is the synthesis of a series of conferences that took place during the 6th international course on post-transcriptional gene regulation at Institut Curie. This year, the course made a special focus on RNA chemistry.
View Article and Find Full Text PDFThis article is the synthesis of the scientific presentations that took place during two international courses at Institute Curie, one on post-transcriptional gene regulation and the other on genome instability and human disease, that were joined together in their 2021 edition. This joined course brought together the knowledge on RNA metabolism and the maintenance of genome stability.
View Article and Find Full Text PDF